首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous features distinguish prokaryotes from eukaryotes, chief among which are the distinctive internal membrane systems of eukaryotic cells. These membrane systems form elaborate compartments and vesicular trafficking pathways, and sequester the chromatin within the nuclear envelope. The nuclear pore complex is the portal that specifically mediates macromolecular trafficking across the nuclear envelope. Although it is generally understood that these internal membrane systems evolved from specialized invaginations of the prokaryotic plasma membrane, it is not clear how the nuclear pore complex could have evolved from organisms with no analogous transport system. Here we use computational and biochemical methods to perform a structural analysis of the seven proteins comprising the yNup84/vNup107–160 subcomplex, a core building block of the nuclear pore complex. Our analysis indicates that all seven proteins contain either a β-propeller fold, an α-solenoid fold, or a distinctive arrangement of both, revealing close similarities between the structures comprising the yNup84/vNup107–160 subcomplex and those comprising the major types of vesicle coating complexes that maintain vesicular trafficking pathways. These similarities suggest a common evolutionary origin for nuclear pore complexes and coated vesicles in an early membrane-curving module that led to the formation of the internal membrane systems in modern eukaryotes.  相似文献   

2.
In the last decade, molecular dynamics (MD) simulations have become an essential tool to investigate the molecular properties of membrane trafficking processes, often in conjunction with experimental approaches. The combination of MD simulations with recent developments in structural biology, such as cryo-electron microscopy and artificial intelligence-based structure determination, opens new, exciting possibilities for future investigations. However, the full potential of MD simulations to provide a molecular view of the complex and dynamic processes involving membrane trafficking can only be realized if certain limitations are addressed, and especially those concerning the quality of coarse-grain models, which, despite recent successes in describing large-scale systems, still suffer from far-from-ideal chemical accuracy. In this review, we will highlight recent success stories of MD simulations in the investigation of membrane trafficking processes, their implications for future research, and the challenges that lie ahead in this specific research domain.  相似文献   

3.
Imbalanced copper homeostasis and perturbation of membrane trafficking are two common symptoms that have been associated with the pathogenesis of neurodegenerative and neurodevelopmental diseases. Accumulating evidence from biophysical, cellular and in vivo studies suggest that membrane trafficking orchestrates both copper homeostasis and neural functions—however, a systematic review of how copper homeostasis and membrane trafficking interplays in neurons remains lacking. Here, we summarize current knowledge of the general trafficking itineraries for copper transporters and highlight several critical membrane trafficking regulators in maintaining copper homeostasis. We discuss how membrane trafficking regulators may alter copper transporter distribution in different membrane compartments to regulate intracellular copper homeostasis. Using Parkinson''s disease and MEDNIK as examples, we further elaborate how misregulated trafficking regulators may interplay parallelly or synergistically with copper dyshomeostasis in devastating pathogenesis in neurodegenerative diseases. Finally, we explore multiple unsolved questions and highlight the existing challenges to understand how copper homeostasis is modulated through membrane trafficking.  相似文献   

4.
Plasma membrane recycling is an important process necessary for maintaining membrane composition. The motor protein myosin Vb regulates plasma membrane recycling through its association with Rab11a. Overexpression of the tail of myosin Vb disrupts trafficking out of plasma membrane recycling systems and leads to the accumulation of Rab11a in both polarized and non-polarized cells. We have investigated the association of Rab11 family interacting protein 2 (Rab11-FIP2) with myosin Vb as an adapter protein between Rab11a and myosin Vb. Immunofluorescence studies indicated a colocalization of endogenous Rab11-FIP2 with green fluorescent protein-myosin Vb tail overexpressed in Madin-Darby canine kidney (MDCK) cells. Yeast two hybrid assays showed that amino acids 129-356 of Rab11-FIP2 were important for binding to myosin Vb tail. In vitro association assays and co-transfection experiments in both MDCK and HeLa cells confirmed this result but further refined the binding site to amino acids 129-290 of Rab11-FIP2. Like myosin Vb, functional studies indicated that Rab11-FIP2 is also important for normal plasma membrane recycling. Green fluorescent protein-Rab11-FIP2 (129-512), which lacks its amino-terminal C2 domain, functioned as a dominant negative acting truncation that caused accumulation of Rab11a and disrupted IgA trafficking in MDCK cells and transferrin trafficking in HeLa cells. The ternary association of myosin Vb and Rab11-FIP2 with Rab11a suggests that a multimeric protein complex is involved in vesicle trafficking through plasma membrane recycling systems.  相似文献   

5.
Tremendous variety in form and function is displayed among the intracellular membrane systems of different eukaryotes. Until recently, few clues existed as to how these internal membrane systems had originated and diversified. However, proteomic, structural, and comparative genomics studies together have revealed extensive similarities among many of the protein complexes used in controlling the morphology and trafficking of intracellular membranes. These new insights have had a profound impact on our understanding of the evolutionary origins of the internal architecture of the eukaryotic cell.  相似文献   

6.
Research carried out in mammalian epithelial cell systems over the past 25 years has delineated pathways and sorting signals involved in polarized delivery of plasma membrane proteins. Recently some progress has been made in the identification of mechanisms underlying this polarized trafficking and in the visualization of trafficking routes in live cells. A promising area of research is the study of trafficking functions of novel polarity genes identified in Drosophila and Caenorhabditis elegans.  相似文献   

7.
The EMBO worskhop at the “end of the world’” (al fin del mundo), a meeting on membrane trafficking and its implication for polarity and diseases, took place in the Chilean Patagonia surrounded by the landscapes once witnessed by Charles Darwin. The meeting showcased some of the best membrane trafficking science with an emphasis in neuroscience and disease models. Speakers from Europe, USA, South America and the graduate students behind it; embarked on an enthusiastic and eclectic dialog where a wide range of cell types, model genetic systems, and diseases where discussed. This meeting demonstrated the power of trafficking concepts to integrate diverse biology and to formulate mechanisms of normal and disease cells.  相似文献   

8.
Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV.  相似文献   

9.
Krauss M  Haucke V 《FEBS letters》2007,581(11):2105-2111
Phosphoinositides serve as important spatio-temporal regulators of intracellular trafficking and cell signalling events. In addition to their recognition by specific phosphoinositide binding domains present within cytoplasmic adaptor proteins or membrane integral channels and transporters phosphoinositides may affect membrane transport by eliciting conformational changes within proteins or by regulating enzymatic activities. During adaptor-mediated membrane traffic phosphoinositides form part of coincidence detection systems that aid in targeting pools of specific phosphoinositides to select intracellular transport pathways. In this review, we discuss potential mechanisms for conferring selectivity onto the phosphoinositide code as well as possible avenues for future research.  相似文献   

10.
The concept of 'lipid rafts' and related liquid-ordered membrane microdomains has attracted great attention in the field of membrane biology, both as a novel paradigm in models of membrane organization and for the potential importance of such domains in phenomena such as membrane signaling and the differential trafficking of various membrane components. Studies of biological and of model membranes have gone hand in hand in shaping our current picture of the possible organization and functions of liquid-ordered lipid microdomains in membranes. This essay discusses some important current questions concerning the existence and functional importance of lipid microdomains in mammalian cell membranes, and the potential as well as the limitations of using model systems to help to address such questions.  相似文献   

11.
泛素(Ub)是一类小分子多肽, 可通过赖氨酸残基与靶蛋白结合, 进而决定靶蛋白的去向。泛素分子对靶蛋白进行特异性修饰的过程称为泛素化。相较于动物和酵母细胞, 植物细胞中泛素介导的蛋白动态循环, 尤其是膜蛋白胞吞动态循环研究相对滞后。随着生物化学以及显微技术的发展, 人们对泛素介导的植物细胞膜蛋白转运有了新的认识。该文阐述了泛素及类泛素在蛋白转运中的作用, 总结了泛素化(ubiquitylation)调控膜蛋白转运的分子生物学机制和常用的研究方法, 并对今后该领域的研究进行了展望。  相似文献   

12.
C Grignon 《Biochimie》1999,81(6):577-596
Since the beginning of the 1990s, our knowledge of the protein equipment of plant membranes progresses at an accelerating pace, owing to the irruption of molecular biology tools and genetics strategies in plant biology. Map-based cloning strategies and exploration of EST databases rapidly enrich the catalog of cDNA or gene sequences expected to code for membrane proteins. The accumulation of 'putative' membrane proteins reinforces the need for structural, functional and physiological information. Indeed, ambiguities often exist concerning the association to a membrane, the membrane identity and the topology of the protein inserted in the membrane. The combination of directed mutagenesis and heterologous expression of plant genes in various systems and plant reverse genetics has opened the possibility to study molecular and physiological functions. This review will emphasize how these tools have been essential for the exciting recent discoveries on plant terminal membrane proteins. These discoveries concern a variety of transport systems for ions, organic solutes including auxin, water channels, a large collection of systems suspected to act as receptors of chemical signals, proteins thought to control vesicle trafficking and enzymatic systems.  相似文献   

13.
Rab GTPases and SNARE fusion proteins direct cargo trafficking through the exocytic and endocytic pathways of eukaryotic cells. We have used steady state mRNA expression profiling and computational hierarchical clustering methods to generate a global overview of the distribution of Rabs, SNAREs, and coat machinery components, as well as their respective adaptors, effectors, and regulators in 79 human and 61 mouse nonredundant tissues. We now show that this systems biology approach can be used to define building blocks for membrane trafficking based on Rab-centric protein activity hubs. These Rab-regulated hubs provide a framework for an integrated coding system, the membrome network, which regulates the dynamics of the specialized membrane architecture of differentiated cells. The distribution of Rab-regulated hubs illustrates a number of facets that guides the overall organization of subcellular compartments of cells and tissues through the activity of dynamic protein interaction networks. An interactive website for exploring datasets comprising components of the Rab-regulated hubs that define the membrome of different cell and organ systems in both human and mouse is available at http://www.membrome.org/.  相似文献   

14.
Plant membrane compartments and trafficking pathways are highly complex, and are often distinct from those of animals and fungi. Progress has been made in defining trafficking in plants using transient expression systems. However, many processes require a precise understanding of plant membrane trafficking in a developmental context, and in diverse, specialized cell types. These include defense responses to pathogens, regulation of transporter accumulation in plant nutrition or polar auxin transport in development. In all of these cases a central role is played by the endosomal membrane system, which, however, is the most divergent and ill‐defined aspect of plant cell compartmentation. We have designed a new vector series, and have generated a large number of stably transformed plants expressing membrane protein fusions to spectrally distinct, fluorescent tags. We selected lines with distinct subcellular localization patterns, and stable, non‐toxic expression. We demonstrate the power of this multicolor ‘Wave’ marker set for rapid, combinatorial analysis of plant cell membrane compartments, both in live‐imaging and immunoelectron microscopy. Among other findings, our systematic co‐localization analysis revealed that a class of plant Rab1‐homologs has a much more extended localization than was previously assumed, and also localizes to trans‐Golgi/endosomal compartments. Constructs that can be transformed into any genetic background or species, as well as seeds from transgenic Arabidopsis plants, will be freely available, and will promote rapid progress in diverse areas of plant cell biology.  相似文献   

15.
Insulin-regulated trafficking of the facilitative glucose transporter GLUT4 has been studied in many cell types. The translocation of GLUT4 from intracellular membranes to the cell surface is often described as a highly specialised form of membrane traffic restricted to certain cell types such as fat and muscle, which are the major storage depots for insulin-stimulated glucose uptake. Here, we discuss evidence that favours the argument that rather than being restricted to specialised cell types, the machinery through which insulin regulates GLUT4 traffic is present in all cell types. This is an important point as it provides confidence in the use of experimentally tractable model systems to interrogate the trafficking itinerary of GLUT4.  相似文献   

16.
The delta-opioid receptor (DOR) belongs to the superfamily of G-protein-coupled receptors (GPCRs) with seven transmembrane domains, and its membrane trafficking is regulated by intracellular sorting processes involving its C-tail motifs, intracellular sorting proteins, and several intracellular signaling pathways. In the quiescent state, DOR is generally located in the intracellular compartments in central neurons. However, chronic stimulation, such as chronic pain and sustained opioid exposure, may induce membrane trafficking of DOR and its translocation to surface membrane. The emerged functional DOR on cell membrane is actively involved in pain modulation and opioid analgesia. This article reviews current understanding of the mechanisms underlying GPCRs and DOR membrane trafficking, and the analgesic function of emerged DOR through membrane trafficking under certain pathophysiological circumstances.  相似文献   

17.
Our understanding of how membrane trafficking pathways function to direct morphogenetic movements and the planar polarization of developing tissues is a new and emerging field. While a central focus of developmental biology has been on how protein asymmetries and cytoskeletal force generation direct cell shaping, the role of membrane trafficking in these processes has been less clear. Here, we review recent advances in Drosophila and vertebrate systems in our understanding of how trafficking events are coordinated with planar cytoskeletal function to drive lasting changes in cell and tissue topologies. We additionally explore the function of trafficking pathways in guiding the complex interactions that initiate and maintain core PCP (planar cell polarity) asymmetries and drive the generation of systematically oriented cellular projections during development.   相似文献   

18.
Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.  相似文献   

19.
Membrane trafficking is essential to maintain the spatiotemporal control of protein and lipid distribution within membrane systems of eukaryotic cells. To achieve their functional destination proteins are sorted and transported into lipid carriers that construct the secretory and endocytic pathways. It is an emerging theme that lipid diversity might exist in part to ensure the homeostasis of these pathways. Sphingolipids, a chemical diverse type of lipids with special physicochemical characteristics have been implicated in the selective transport of proteins. In this review, we will discuss current knowledge about how sphingolipids modulate protein trafficking through the endomembrane systems to guarantee that proteins reach their functional destination and the proposed underlying mechanisms.  相似文献   

20.
We discuss in this review recent studies using the worm Caenorhabditis elegans to decipher endocytic trafficking in a multicellular organism. Recent advances, including in vivo assay systems, new genetic screens, comparative functional analysis of conserved proteins, and RNA-mediated interference (RNAi) in C. elegans, are being used to study the functions of known membrane trafficking factors and to identify new ones. The ability to monitor endocytosis in vivo in worms allows one to test current endocytosis models and to demonstrate the physiological significance of factors identified by genetic and biochemical methods. The available human genome sequence facilitates comparative studies where human homologs of new factors identified in C. elegans can be quickly assayed for similar function using traditional cell biological methods in mammalian cell systems. New studies in C. elegans have used a combination of these techniques to reveal novel metazoan-specific trafficking factors required for endocytosis. Many more metazoan-specific trafficking factors and insights into the mechanisms of endocytosis are likely to be uncovered by analysis in C. elegans .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号