首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The connective tissues of the bovine optic nerve and left recurrent nerve have been investigated at the ultrastructure level by TEM and freeze-fracture. The outermost of three concentric sheaths enveloping the nerve appear very similar; the intermediate sheaths appear different enough to suggest different functionalities, while the innermost sheaths are completely dissimilar. The ultrastructural aspects of the extracellular matrix suggest that all the connective tissues may mainly play a passive role as a packing material for the nerve fibers, while none of the sheaths seems apt to withstand mechanical stresses.  相似文献   

2.
We examined the role of nerve terminals in organizing acetylcholine receptors on regenerating skeletal-muscle fibers. When muscle fibers are damaged, they degenerate and are phagocytized, but their basal lamina sheaths survive. New myofibers form within the original basal lamina sheaths, and they become innervated precisely at the original synaptic sites on the sheaths. After denervating and damaging muscle, we allowed myofibers to regenerate but deliberately prevented reinnervation. The distribution of acetylcholine receptors on regenerating myofibers was determined by histological methods, using [125I] alpha-bungarotoxin or horseradish peroxidase-alpha-bungarotoxin; original synaptic sites on the basal lamina sheaths were marked by cholinesterase stain. By one month after damage to the muscle, the new myofibers have accumulations of acetylcholine receptors that are selectively localized to the original synaptic sites. The density of the receptors at these sites is the same as at normal neuromuscular junctions. Folds in the myofiber surface resembling junctional folds at normal neuromuscular junctions also occur at original synaptic sites in the absence of nerve terminals. Our results demonstrate that the biochemical and structural organization of the subsynaptic membrane in regenerating muscle is directed by structures that remain at synaptic sites after removal of the nerve.  相似文献   

3.
The study by the author and his co-workers of the innervation of the sheaths of extraorganic (spinal and cerebral) and intraorganic nerves has shown that their nervous apparatus is differentiated in accordance with differentiation of epi-, peri- and endoneurium. The peculiar features of the innervation of sheaths of different nerves correspond to their functions and pathoplastical individuality and manifest themselves by uneven complexity, concentration and microtopography of nerve structures in the sheaths and by distinctions in the development and reactivity. Interrelationships and correlation was established between the specific functional readiness of nerve conductors and the structural organization of their sheaths' nervous apparatus. The phenomenon of reciprocal innervation of nerves was established in experiment as well as earlier reactive and compensatory-reparative processes in the nervous apparatus of nerve sheaths as compared with their conductors.  相似文献   

4.
The neural cell adhesion molecule (N-CAM) is a membrane glycoprotein involved in neuron-neuron and neuron-muscle adhesion. It can be synthesized in various forms by both nerve and muscle and it becomes concentrated at the motor endplate. Biochemical analysis of a frog muscle extract enriched in basal lamina revealed the presence of a polydisperse, polysialylated form of N-CAM with an average Mr of approximately 160,000 as determined by SDS-PAGE, which was converted to a form of 125,000 Mr by treatment with neuraminidase. To define further the role of N-CAM in neuromuscular junction organization, we studied the distribution of N-CAM in an in vivo preparation of frog basal lamina sheaths obtained by inducing the degeneration of both nerve and muscle fibers. Immunoreactive material could be readily detected by anti-N-CAM antibodies in such basal lamina sheaths. Ultrastructural analysis using immunogold techniques revealed N-CAM in close association with the basal lamina sheaths, present in dense accumulation at places that presumably correspond to synaptic regions. N-CAM epitopes were also associated with collagen fibrils in the extracellular matrix. The ability of anti-N-CAM antibodies to perturb nerve regeneration and reinnervation of the remaining basal lamina sheaths was then examined. In control animals, myelinating Schwann cells wrapped around the regenerated axon and reinnervation occurred only at the old synaptic areas; new contacts between nerve and basal lamina had a terminal Schwann cell capping the nerve terminal. In the presence of anti-N-CAM antibodies, three major abnormalities were observed in the regeneration and reinnervation processes: (a) regenerated axons in nerve trunks that had grown back into the old Schwann cell basal lamina were rarely associated with myelinating Schwann cell processes, (b) ectopic synapses were often present, and (c) many of the axon terminals lacked a terminal Schwann cell capping the nerve-basal lamina contact area. These results suggest that N-CAM may play an important role not only in the determination of synaptic areas but also in Schwann cell-axon interactions during nerve regeneration.  相似文献   

5.
Abstract: Following nerve crush, cholesterol from degenerating myelin is conserved and reutilized for new myelin synthesis during nerve regeneration. The possibility that other myelin lipids are salvaged and reutilized has not been investigated previously. We examined the fate of myelin phospholipids and their fatty acyl moieties following nerve crush by electron microscopic autoradiography of myelin lipids prelabeled with [3H]oleate or [2-3H]-glycerol. Both precursors were incorporated predominantly (>90%) into phospholipids; >85% of the [3H]oleate was incorporated as oleate, with the remainder in longer-chain fatty acids. Before nerve crush, both labels were restricted to myelin sheaths. Following nerve crush and subsequent regeneration, over half the label from [3H]oleate, but little from [2-3H]glycerol, remained in nerve. The oleate label was present as fatty acyl moieties in phospholipids and was localized to newly formed myelin sheaths. Among the extracellular soluble lipids within the degenerating nerve, the bulk of the labeled phospholipids floated at the same density as lipoprotein particles. These data indicate that myelin phospholipids are completely hydrolyzed during nerve degeneration, that at least half the resultant free fatty acids are salvaged and reutilized for new myelin synthesis, and that these salvaged fatty acids are transported by a lipoprotein-mediated mechanism similar to that functioning in cholesterol reutilization.  相似文献   

6.
Acetylcholinesterase (AChE) in skeletal muscle is concentrated at neuromuscular junctions, where it is found in the synaptic cleft between muscle and nerve, associated with the synaptic portion of the myofiber basal lamina. This raises the question of whether the synaptic enzyme is produced by muscle, nerve, or both. Studies on denervated and regenerating muscles have shown that myofibers can produce synaptic AChE, and that the motor nerve may play an indirect role, inducing myofibers to produce synaptic AChE. The aim of this study was to determine whether some of the AChE which is known to be made and transported by the motor nerve contributes directly to AChE in the synaptic cleft. Frog muscles were surgically damaged in a way that caused degeneration and permanent removal of all myofibers from their basal lamina sheaths. Concomitantly, AChE activity was irreversibly blocked. Motor axons remained intact, and their terminals persisted at almost all the synaptic sites on the basal lamina in the absence of myofibers. 1 mo after the operation, the innervated sheaths were stained for AChE activity. Despite the absence of myofibers, new AChE appeared in an arborized pattern, characteristic of neuromuscular junctions, and its reaction product was concentrated adjacent to the nerve terminals, obscuring synaptic basal lamina. AChE activity did not appear in the absence of nerve terminals. We concluded therefore, that the newly formed AChE at the synaptic sites had been produced by the persisting axon terminals, indicating that the motor nerve is capable of producing some of the synaptic AChE at neuromuscular junctions. The newly formed AChE remained adherent to basal lamina sheaths after degeneration of the terminals, and was solubilized by collagenase, indicating that the AChE provided by nerve had become incorporated into the basal lamina as at normal neuromuscular junctions.  相似文献   

7.
Summary Tight or occluding intercellular junctions occur between adjacent glial processes in normal and regenerating crayfish motor nerve sheaths. Although infrequent, these junctions possess the ridge and groove configuration characteristic of freeze-cleaved occluding junctions. When present, nerve sheath tight junctions consist of a single, or at most a few, parallel intramembrane ridges situated on the EF membrane face of the glial plasma membrane. Consequently, such contacts are rarely recognized in thin sections of plasticembedded nerve sheaths. Crayfish nerve sheath tight junctions are of the fascia occludens type and, therefore, do not impede solute flow across the nerve sheath. Fasciae occludentes of regenerating nerve sheaths occur in close proximity to discoid plaque-like aggregates of particles assumed to represent maculae adhaerentes. This relationship, which was not observed in normal nerve sheaths, suggests a functional association between the two types of junctions, perhaps developmental transformation of one junction type into the other. Although ridges and grooves of tight junctions occur next to crossfractured trans-glial channels, no functional significance is proposed for this relationship. This study is the first report of tight intercellular junctions in crustacean glial nerve sheaths.Supported by the National Research Council of Canada  相似文献   

8.
A sural nerve dissected from a recently dead patient displayed an unusual X-ray diffraction pattern, suggesting that in situ and at the time of the patient's death the myelin sheaths were in a swollen state. Diffraction patterns of the swollen type were also recorded from: (1) a sural nerve from the corpse of a neurologically healthy person after soaking the nerve with Ringer solution at pH 5.5; (2) sciatic nerves dissected from rat cadavers at increasing time after death. In all the cases the swollen patterns reversed to the native type upon superfusion with Ringer solution at pH 7.3. The postmortem effect is to decrease the pH of the fluids surrounding the nerves in the cadavers. Our experiments show that the early postmortem processes have the effect of acidifying PNS nerves and that as a consequence of acidification the myelin sheaths swell.  相似文献   

9.
The localization of 3H-labeled cholesterol in nerves undergoing degeneration and regeneration was studied by radioautography at the electron microscope level. Two types of experiments were carried out: (a) Cholesterol-1,2-3H was injected intraperitoneally into suckling mice. 5 wk later, Wallerian degeneration was induced in the middle branch of the sciatic nerve, carefully preserving the collateral branches. The animals were then sacrificed at various times after the operation. During degeneration, radioactivity was found over myelin debris and fat droplets. In early stages of regeneration, radioactivity was found in myelin debris and regenerating myelin sheaths. Afterwards, radioactivity was found predominantly over the regenerated myelin sheaths. Radioactivity was also associated with the myelin sheaths of the unaltered fibers, (b) Wallerian degeneration was induced in the middle branch of the sciatic nerves of an adult mouse, preserving the collateral branches. Cholesterol-1,2-3H was injected 24 and 48 hr after the operation and the animal was sacrificed 6 wk later. Radioactivity was found in the myelin sheaths of the regenerated and unaltered fibers. The results from these experiments indicate that: (a) exogenous cholesterol incorporated into peripheral nerve during myelination remains within the nerve when it undergoes degeneration. Such cholesterol is kept in the myelin debris as an exchangeable pool from which it is reutilized for the formation of the newly regenerating fibers, especially myelin. (b) exogenous cholesterol incorporated into the nerves at the time that degeneration is beginning is also used in the formation of new myelin sheaths during regeneration, (c) mature myelin maintains its ability to incorporate cholesterol.  相似文献   

10.
One sciatic nerve of a White Leghorn hen was severed and the distal portion was allowed to undergo Wallerian degeneration. The change in histamine and DNA concentration and mast cell number was measured at different times following nerve sectioning in the proximal regenerating, distal degenerating, and intact, contralateral nerves. The experimental results revealed a significant accumulation of histamine in the proximal desheathed segment and in the contralateral “functional nerve,” whereas the biogenic amine in the distal desheathed nerve significantly decreased. The pattern of change of histamine in the distal and proximal nerve sheaths was different: it dropped at 2 h and then rose in the later stages of Wallerian degeneration. In the distal desheathed nerves and in both the proximal and distal nerve sheaths DNA increased significantly by 14 days. The number of mast cells appeared to be highest in the 14-day distal nerve and in the 7-day proximal nerve sheaths. These results support a dual localization of histamine in the peripheral nerve, and are consistent with the interpretation that the amine has either some role in neurotransmission or in the process of growth and regeneration.  相似文献   

11.
Incorporation of newly formed lecithin into peripheral nerve myelin   总被引:5,自引:5,他引:0       下载免费PDF全文
Radioactive choline was used to study the metabolism and movement of choline-containing phospholipids in peripheral nerve myelin of adult mice. Incorporation at various times after intraperitoneal injection was measured in serial segments of sciatic nerve as well as in myelin isolated from those segments. At no time (1 h to 35 days) could a proximal-distal difference in the extent of labeling be demonstrated. This finding suggests that incorporation of precursor choline phospholipids into nerve membranes is a local event, with little contribution from the neuronal perikaryon via axoplasmic transport. Autoradiographic investigations were undertaken to elucidate the pattern of movement of radioactive choline-labeled phospholipids, predominantly lecithin, into the myelin sheaths of the sciatic nerve. A sequence of autoradiographs was prepared from animals sacrificed between 20 min and 35 days after a microinjection of precursor directly into the nerve. Analysis of these autoradiograms revealed that labeling is initially concentrated in the Schwann cell cytoplasm. Later, the label moves first into the outer regions of the myelin sheaths and is eventually distributed evenly throughout the inner and outer layers of the sheath. At no time is there a build-up of label in the axon. The rate of uptake of precursor and subsequent redistribution of lecithin into the myelin were also examined in frog sciatic nerve (18 degrees C). Both uptake and redistribution processes were considerably slower in the cold-blooded animal.  相似文献   

12.
Abstract: Acetyltransferase enzymatic activity was detected and measured in homogenates obtained from intact nerve fibers and their separate cellular components, in the tropical squid Sepioteuthis sepioidea. The levels of acetylcholine synthesis were determined in pooled samples of whole stellar nerve, intact giant nerve fiber, extruded axoplasm, axoplasm-free giant nerve fiber sheaths, and small nerve fibers. The values found per mg of protein for the axoplasm-free sheaths are about 3–9 times those of the extruded axoplasm, and comparable to those found for the intact giant nerve fiber. These experimental findings settle the question of whether the Schwann cells of the giant nerve fiber of S. sepioidea , under physiological conditions, contain acetyltransferase activity and are able to synthesize acetylcholine.  相似文献   

13.
Although there are many histological techniques for assessing myelin sheaths and axons in paraffin embedded or frozen sections of the peripheral nervous system, modern approaches usually use plastic embedded material. Although plastic embedding is superior for small cutaneous branches, this method has limited value for histological assessment of nerve trunks. We report three methods which together yield a comprehensive approach for thorough and detailed investigation of human nerve trunks. The rapid osmication method permitted assessment of myelinated nerve fibers from frozen sections at operation, thus providing the surgeon with guidance on the extent of nerve resection. The modification presented here resulted in permanent slides, allowing comparison of results with those of the other two procedures. The new osmium-hematoxylin technique could be performed on paraffin embedded nerves. Paraffin, unlike plastic, permitted the study of the whole cross sectional area of the nerve in single sections. Moreover, the sharp image of the myelin permitted computerized morphometry. The significantly modified axonal silver impregnation technique was performed on frozen sections mounted on glass slides, as opposed to the time-consuming impregnation of free-floating sections. The latter technique had a high success rate and permitted semiquantitative assessment of axons in nerve trunks. These methods can be performed in any routine histology laboratory and resulted in greater accuracy compared to conventional methods.  相似文献   

14.
Maynard EA 《Tissue & cell》1971,3(2):215-250
Using acetylthiocholine as substrate, microscopically localizable cholinesterase (ChE) activity is demonstrated in neural and glial elements of central and peripheral nervous systems of the lobsters, Panulirus argus and Homarus americanus. Moderate to very intense ChE activity occurs in all synaptic regions of the central ganglia and stomatogastric ganglion, in glial sheaths around neuron somata and peripheral nerve axons, and in cytoplasm of a few nerve cell bodies. Axons, identified as motor, contain extremely little ChE. The principal reaction in peripheral nerves occurs in sheath elements of sensory fibres; in most cases, much of the reaction is lost as the nerves lose the sheaths at the point of entry into brain.  相似文献   

15.
As an aid in the interpretation of the physiological properties of unmedullated nerve fibers, particularly those having their cells of origin in the dorsal root ganglia, more precise information about their morphology has been acquired through employment of the electron microscope. The appearance of the fibers in the skin nerves is described, with special reference to the structure of their sheaths; and a notation is made about the bearing of the axon-sheath relationship on the biophysical mechanism of conduction (p. 714). There is no basic difference between the sheath systems of the d.r.C and the s.C fibers. Attention is called to a point of similarity between the sheaths of unmyelinated and myelinated axons (p. 715). An assessment was made of the likelihood of interaction between the fibers. In action potentials showing temporal dispersion at several distances, the elevations appeared in their calculated positions. A model of a group of Schwann sheaths was constructed from successive electron microscope sections, showing that the lengths of the sheath branches are short in comparison with the wave lengths of the action potentials. Supported by these and other considerations, the argument is strongly in favor of the conclusion that among d.r.C fibers, as in other fibers, there is no cross-excitation between the axons. A new analysis of the size distribution of the fibers in a sural nerve was made from electron microscope pictures; and from the measurements the action potential was constructed. The result confirmed the view, previously expressed, that the velocities of conduction in the fibers can be precisely accounted for by multiplying the diameters by a constant. In the dorsal roots, the striking change that takes place in the appearance of the fibers and their disposition in the Schwann sheaths can be seen in Fig. 11. The axons partake of the special properties of the peripheral branches, which necessitated the creation of the subdivision of d.r.C fibers. But, their diameters are much smaller. At a set of reduced conduction velocities the configuration of the compound action potential in the nerves is repeated in the roots, with the root velocities still conforming to the size-velocity rule derived from nerve axons.  相似文献   

16.
Biopsy of the sural nerve was performed on three patients with severe Minamata disease of more than 10 years duration. There were so many unmyelinated and poorly myelinated nerve fibers that myelinated fibers scattered irregularly in small numbers or in groups of peculiar features in the intraneural bundle. Abnormaly thin or poorly formed myelin sheaths were noticed. Incomplete myelination and abnormal myelination varied in size and shape appeared as fetal anomaly. Regenerated axons extremely small in size remained singly or in groups following regenerative sprouting. Sometimes, extremely small axons with normal myelination were noticeable, while the axons were lost, leaving myelin sheaths. Axons occasionally contained increased neurofilaments. Schwann cells were not so increased as in adult Minamata disease. Degenerative changes of nerve fibers still proceeded, presumably because the patients lived in the mercury-contaminated district. Myelin degenerations and glycogen deposits in the axoplasm were identified.  相似文献   

17.
Abstract: The squid giant nerve exhibits neuron-Schwann cell interactions that appear to involve glutamate as a mediator; however, there is no information available about the possible fate of the released glutamate. In this study, it is demonstrated that the periaxonal sheaths of the extrasynaptic regions of squid giant nerves (where the glial cells are located) possess the capacity to transport glutamate. In whole intact nerves incubated with low-glutamate concentrations for long periods of time, the majority of the glutamate incorporated into the tissue was found in the sheaths. Axoplasm-free sheaths incubated for long periods of time with low concentrations of glutamate were able to accumulate this amino acid against a large apparent concentration gradient. Sheath glutamate uptake occurred in a sodium-dependent fashion over a wide concentration range and displayed both high- and low-affinity components. Glutamate uptake at concentrations below the K m of the high-affinity component was independent of homoexchange and displayed a specificity that is similar to that described for high-affinity glutamate transport in mammalian brain. It is proposed that the sheath transport systems may be involved in the regulation of glutamate levels in the intercellular clefts of the nerve fiber, as part of the glutamatergic neuron-glial signaling mechanisms in the squid giant nerve fiber.  相似文献   

18.
生物组织散射元平均间距估计的一种新方法   总被引:9,自引:0,他引:9  
生物组织散射元平均间中划描述生物组织微观结构特性和生物组织超微散射特性的重要参数。本文在对生物组织超声背向散射随机模的基础上,提出了基于生物组织超声背向散射信号突变点检测的工用射元平均间距估计的新方法。该方法是生物组织超声散射分析的有效方法。  相似文献   

19.
Abstract: The present study sought to investigate the presence and distribution of some enzymatic activities involved in the metabolism of glutamate in the giant nerve fiber of the tropical squid Sepioteuthis sepioidea . Specific activities of aspartate aminotransferase and glutamate dehydrogenase were evaluated in homogenates of the isolated giant fiber, extruded axoplasm, and axoplasm-free giant nerve fiber sheaths. The activities of both enzymes were present in the tissue. The specific activity of aspartate aminotransferase was similar in axoplasm and sheaths. However, the specific activity of glutamate dehydrogenase was an order of magnitude higher in the sheaths. This finding is discussed in the framework of the hypothesis that proposes that a differential distribution of the enzymes of the glutamatergic system between the axonal and neuroglial compartments forms part of a system of communication between these cells whose neuronal signal may be glutamate.  相似文献   

20.
A rapid whole mount staining method is described to identify and differentiate microfilariae without elaborate processing. A single solution combining Hoyer's mounting medium and hematoxylin stain facilitates light microscopic examination of nuclei and sheaths of microfilariae. The new technique stains microfilariae adequately in three to seven minutes at 60--64 C making the method preferable to conventional methods that may take as long as 45 to 60 minutes. Lantern heat may be used to heat slides in rural areas with good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号