首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of channel-forming peptide gramicidin A on the dipole potential of phospholipid monolayers and bilayers has been studied. Surface pressure and surface potential isotherms of monolayers have been measured with a Langmuir trough equipped with a Wilhelmy balance and a surface potential meter (Kelvin probe). Gramicidin has been shown to shift pressure-area isotherms of phospholipids and to reduce their monolayer surface potentials. Both effects increase with the increase in gramicidin concentration and depend on the kind of phosphatidylcholine used. Application of the dual-wavelength ratiometric fluorescence method using the potential-sensitive dye RH421 has revealed that the addition of gramicidin A to dipalmitoylphosphatidylcholine liposomes leads to a decrease in the fluorescence ratio of RH421. This is similar to the effect of phloretin, which is known to decrease the dipole potential. The comparison of the concentration dependences of the fluorescence ratio for gramicidin and phloretin shows that gramicidin is as potent as phloretin in modifying the membrane dipole potential.  相似文献   

2.
Summary Voltage-sensitive membrane potential probes were used to monitor currents resulting from positive or negative charge movement across small and large unilamellar phosphatidylcholine (PC) vesicles. Positive currents were measured for the paramagnetic phosphonium ion or for K+-valinomycin. Negative currents were indirectly measured for the anionic proton carriers CCCP and DNP by monitoring transmembrane proton currents. Phloretin, a compound that is believed to decrease dipole fields in planar bilayers, increases positive currents and decreases negative currents when added to egg PC vesicles. In these vesicles, positive currents are increased by phloretin addition to a much larger degree than CCCP currents are reduced. This asymmetry, with respect to the sign of the charge carrier, is apparently not the result of changes in the membrane dielectric constant. It is most easily explained by deeper binding minima at the membrane-solution interface for the CCCP anion, when compared to the phosphonium. The measured asymmetry and the magnitudes of the current changes are consistent with the predictions of a point dipole model. The use of potential-sensitive probes to estimate positive and negative currents, provides a methodology to monitor changes in the membrane dipole potential in vesicle systems.  相似文献   

3.
In search of an efficient method to prepare cholinephosphate headgroups in phospholipids under mild conditions (where the diacylglycerol moiety is not subject to oxidation), a method was developed for phosphorylation using a trialkyl phosphite and I2. The active intermediate is a phosphoryl iodide formed by oxidation of the phosphite with I2. 2-Bromoethanol, dimethyl chlorophosphite, and an alcohol (diglyceride) are converted to a phosphate triester in a one-pot reaction with high yield. In the second reaction, the phosphate triester is demethylated, and the ethyl bromide group is converted to choline by treatment with aqueous trimethylamine. This procedure is applied to the synthesis of hexadecylphosphocholine, and 1,2-didecanoyl-1-deoxy-1-thio-sn-glyceryo-3-phosphocholine.  相似文献   

4.
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 °C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer.  相似文献   

5.
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 degrees C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer.  相似文献   

6.
The terminal transferase activity is modified in the presence of lipid vesicles. A deep inhibitory effect takes place with phosphatidylserine and phosphatidylinositol, while some stimulation is present with sphingomyelin and almost no effect has been detected with phosphatidylethanolamine vesicles. These effects seem to be related to the charge properties of the lipid membranes.A possible involvement of phospholipids in the mechanism of action of the terminal transferase is suggested.  相似文献   

7.
The large intrinsic membrane dipole potential, phi(d), is important for protein insertion and functioning as well as for ion transport across natural and model membranes. However, the origin of phi(d) is controversial. From experiments carried out with lipid monolayers, a significant dependence on the fatty acid chain length is suggested, whereas in experiments with lipid bilayers, the contribution of additional -CH(2)-groups seems negligibly small compared with that of the phospholipid carbonyl groups and lipid-bound water molecules. To compare the impact of the -CH(2)-groups of dipalmitoylphosphatidylcholine (DPPC) near and far from the glycerol backbone, we have varied the structure of DPPC by incorporation of sulfur atoms in place of methylene groups in different positions of the fatty acid chain. The phi(d) of symmetric lipid bilayers containing one heteroatom was obtained from the charge relaxation of oppositely charged hydrophobic ions. We have found that the substitution for a S-atom of a -CH(2)-group decreases phi(d). The effect (deltaphi(d) = -22.6 mV) is most pronounced for S-atoms near the lipid head group while a S-atom substitution in the C(13)- or C(14)-position of the hydrocarbon chain does not effect the bilayer dipole potential. Most probably deltaphi(d) does not originate from an altered dipole potential of the acyl chain containing an heteroatom but is mediated by the disruption of chain packing, leading to a decreased density of lipid dipoles in the membrane.  相似文献   

8.
By the method of minimization of phospholipid bilayers free energy it was shown that at a decrease of inclination angle of dipole fragments of phospholipid molecules to the bilayer surface there take place: a) an increase of bilayer density, b) a decrease of bilayer thickness caused by a decrease of dipole repulsive forces, c) an increase of the number of molecules in the bilayer due to hydrophobization of the latter. The existence of upper and lower critical angles of dipoles inclination to the bilayer surface were found: theta upcrit, theta lowcrit, if theta greater than or equal to the layers must be destroyed, and if theta less than or equal to theta lowcrit, transition of bilayers to the crystalline state must take place.  相似文献   

9.
One of the major limitations in gene therapy is an inability of naked siRNA to passively diffuse through negatively charged cell membranes. Therefore, the siRNA transport into a cell requires efficient carriers. In this work we analyzed the charge-dependent interaction of the complexes of cationic carbosilane dendrimers (CBD) and anti-HIV siRNA (dendriplexes) with the model membranes - large unilamellar vesicles (LUV). We used the second generation of branched with CBD carbon-silicon bonds (CBD-CS) which are water-stable and that of oxygen-silicon bonds (CBD-OS) which are slowly hydrolyzed in aqueous solutions. The LUVs were composed of zwitterionic dimyristoylphosphatidylcholine (DMPC), negatively charged dipalmitoylphosphatidylglycerol (DPPG) and their mixture (DMPC/DPPG, molar ratio 7:3). The interaction of dendriplexes with LUVs affected both zeta potential and size of the vesicles. The changes of these values were larger for the negatively charged LUV. CBD-CS resulted in the decrease of zeta potential values to more negative ones, whereas an opposite effect took place for CBD-OS suggesting a different kind of interaction between LUVs and the dendriplexes. The results indicate that both CBD-CS and CBD-OS can be used for transport of siRNA into the cells. However, CBD-CS are preferred due to a better stability in water and improved bioavailability of siRNA on their surface.  相似文献   

10.
The in vitro mechanism by which polyamines affect protein kinase C (PK C) activation process was investigated in a reconstituted system consisting of purified enzyme and phospholipid vesicles of various phosphatidylserine content. It was found that the addition of spermine greatly interferes with the association of PK C to liposomes. This tetramine, at micromolar concentrations, was most potently effective while other polyamines such as spermidine and putrescine were almost ineffective; therefore the modulatory action appeared to be structure specific. The spermine effect is dramatically influenced by the density of the phosphatidylserine present on the liposome, suggesting the complex formation with the acidic component on phospholipid vesicles to be the mechanism by which this polyamine exerts its modulatory action.  相似文献   

11.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37°C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20°C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20°C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freezethaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

12.
We have replaced the lipid associated with a purified calcium transport protein with a series of defined synthetic dioleoyl phospholipids in order to determine the effect of phospholipid headgroup structure on the ATPase activity of the protein. At 37 degrees C the zwitterionic phospholipids (dioleoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) support the highest activity, while a phospholipid with two negative charges (dioleoyl phosphatidic acid) supports an activity which is at least twenty times lower. Dioleoyl phospholipids with a single net negative charge support at intermediate ATPase activity which is not affected by the precise chemical structure of the phospholipid headgroup. The protocol used to determine the phospholipid headgroup specificity of calcium transport protein is novel because it establishes the composition of the lipid in contact with the protein without the need to isolate defined lipid-protein complexes. This allows the lipid specificity to be determined using only very small quantities of test lipids. We also determined the ability of the same phospholipids to support calcium accumulation in reconstituted membranes. Two requirements had to be met. The phospholipid had to support the ATPase activity of the pump protein and it had to form sealed vesicles as determined by electron microscopy. Since a number of phospholipids met those requirements it is clear that in vitro the lipid specificity of the calcium-accumulating system is rather broad.  相似文献   

13.
The dipole potential and the area changes induced by trehalose on dimyristoyl phosphatidylcholine (DMPC), 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (dietherPC), dimyristoyl phosphatidylethanolamine (DMPE), 1,2-di-O-tetradecyl-sn-glycero-3-phosphoethanolamine (dietherPE) monolayers have been studied at different temperatures. The insertion of trehalose into DMPC monolayers in the fluid and gel states requires of the presence of carbonyl groups. The area increase observed at 0.15M trehalose is congruent with the decrease in the dipole potential. However, in dietherPC, in which trehalose does not affect the area, a decrease in the dipole potential is also observed. This is interpreted as a result of the displacement of water from the phosphate groups exposed to the aqueous phase. In DMPE, trehalose also decreases the dipole potential without affecting the area of saturated monolayers and in dietherPE no effect on dipole potential and area was observed. It is concluded that the spacer effect of trehalose depends on the specific interaction with CO, which is modulated by the strength of the interaction of the PO groups with lateral NH groups. However, it is not the only contribution to the dipole potential decrease.  相似文献   

14.
15.
Anions and cations have long been recognized to be capable of modifying the functioning of various membrane-related physiological processes. Here, a fluorescent ratio method using the styrylpyridinium dyes, RH421 and di-8-ANEPPS, was applied to determine the effect of a range of anions and cations on the intramembrane dipole potential of dimyristoylphosphatidylcholine vesicles. It was found that certain anions cause a decrease in the dipole potential. This could be explained by binding within the membrane, in support of a hypothesis originally put forward by A. L. Hodgkin and P. Horowicz [1960, J. Physiol. (Lond.) 153:404-412.] The effectiveness of the anions in reducing the dipole potential was found to be ClO4- > SCN- > I- > NO3- > Br- > Cl- > F- > SO42-. This order could be modeled by a partitioning of ions between the membrane and the aqueous phase, which is controlled predominantly by the Gibbs free energy of hydration. Cations were also found to be capable of reducing the dipole potential, although much less efficiently than can anions. The effects of the cations was found to be trivalent > divalent > monovalent. The cation effects were attributed to binding to a specific polar site on the surface of the membrane. The results presented provide a molecular basis for the interpretation of the Hofmeister effect of lyotropic anions on ion transport proteins.  相似文献   

16.
Hybrid polar compounds (HPCs) are powerful inducers of terminal differentiation of various types of tumors, including Friend murine erythroleukemia cells (MELCs). They are known to act synergistically with an increase in the extracellular concentration of cations, which causes a positive shift in the negative value of the ionic surface potential. Two HPCs, hexamethylenebisacetamide (HMBA) and suberoylanilide hydroxamic acid (SAHA), were adsorbed on self-assembled phospholipid monolayers supported on a mercury drop and the shift in the surface dipole potential chi of the lipid film due to their adsorption was estimated from charge measurements. At their optimal concentrations for inducing MELC terminal differentiation (5 mM for HMBA and 2.6 microM for SAHA), these HPCs cause a chi shift of about 15-20 mV, positive toward the hydrocarbon tails, both on neutral phosphatidylcholine films and on negatively or positively charged phosphatidylserine films. This strongly suggests that the nonspecific effect of HPCs of different structure in inducing cancer cells to rescue their differentiation program is related to a positive chi shift on the extracellular side of the cell membrane.  相似文献   

17.
Hydrophobic model peptides, consisting of 5 or 6 amino acids and carrying a net positive charge at the amino terminus, exhibit a dramatically increased association with large unilamellar egg-PC vesicles upon application of a valinomycin-induced K+ diffusion potential, negative inside. The association of the peptides is largely reversible, apparent from a release of peptide upon dissipation of the membrane potential.  相似文献   

18.
The partition of cholesterol analogues between dipalmitoylphosphatidylcholine and egg phosphatidylcholine vesicles was examined. Cholesterol, trans- and cis-22-dehydrocholesterols, and 24 alpha-ethyl,trans-22-dehydrocholesterol (stigmasterol) showed a preference from gel phase dipalmitoylphosphatidylcholine over fluid phase egg phosphatidylcholine at 37 degrees C. Within this group, the sterol concentration in DPPC relative to that in egg PC ranged from about 1.5 to 2.0. Cholesterol analogues with a 24 alpha-methyl or ethyl substituent (campesterol and beta-sitosterol, respectively) and cholestanol (dihydrocholesterol) distributed about equally between the two types of phospholipid. Thus, in this study involving two kinds of phospholipid and a small number of cholesterol analogues, there was no simple correlation between the sterol structure and its partition behavior. The combined results from studies on sterol partition behavior and on sterol interaction with individual phospholipids (Rujanavech, C., Henderson, P.A., and Silbert, D.F. (1986) J. Biol. Chem. 261, 7204-7214) provide an adequate basis to explain the different patterns of membrane lipid adaptation which accompany growth of LM cells on various cholesterol analogues (Rujanavech, C., and Silbert, D.F. (1986) J. Biol. Chem. 261, 7196-7203).  相似文献   

19.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37 degrees C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20 degrees C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20 degrees C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freeze-thaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

20.
To better understand the influence of phospholipid acyl-chain composition on the formation of pores by cytotoxic amphipathic helices in biological membranes, the leakage of aqueous contents induced by the synthetic peptide GALA (WEAALAEALAE ALAEHLAEALAEALEALAA) from large unilamellar phospholipid vesicles of various compositions has been studied. Peptide-mediated leakage was examined at pH 5.0 from vesicles made of phosphatidylcholine (PC) and phosphatidylglycerol (PG) with the following acyl-chain compositions: 1-palmitoyl-2-oleoyl (PO), 1,2-dioleoyl (DO), 1, 2-dielaidoyl (DE), and 1,2-dipetroselinoyl (DPe). A mathematical model predicts and simulates the final extents of GALA-mediated leakage of 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and p-xylene-bis-pyridinium bromide (DPX) from 1-palmitoyl-2-oleoyl-phosphatidylcholine/1-palmitoyl-2-oleoyl-phospha tidylglycerol (POPC/POPG) and 1, 2-dielaidoyl-sn-glycero-3-phosphocholine/1, 2-dielaidoyl-phosphatidylglycerol (DEPC/DEPG) liposomes at pH 5.0 as a function of peptide concentration in the bilayer, by considering that GALA pores responsible for this leakage have a minimum size of 10 +/- 2 monomers and are formed by quasiirreversible aggregation of the peptide. With the phospholipid acyl-chain compositions tested, GALA-induced ANTS/DPX leakage follows the rank order POPC/POPG approximately DEPC/DEPG > DPePC/DPePG > DOPC/DOPG. Results from binding experiments reveal that this reduced leakage from DOPC/DOPG vesicles cannot be explained by a reduced binding affinity of the peptide to these membranes. As shown by monitoring the leakage of a fluorescent dextran, an increase in the minimum pore size also does not explain the reduction in ANTS/DPX leakage. The data suggest that surface-associated GALA monomers or aggregates are stabilized in bilayers composed of phospholipids containing a cis unsaturation per acyl chain (DO and DPe), while transbilayer peptide insertion is reduced. GALA-induced ANTS/DPX leakage is also decreased when the vesicles contain phosphatidylethanolamine (PE). This lends further support to the suggestion that factors stabilizing the surface state of the peptide reduce its insertion and subsequent pore formation in the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号