首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the cylo-oxygenase pathway of arachidonic acid (AA) metabolism inhibits glucose-stimulatedinsulin release throught synthesis of prostaglandins, very little attention has been given to the effects of lipoxygenase pathway products on beta cell function. We have examined the effects of two structurally-dissimilar lipoxygenase inhibitors on insulin release from mono-layer-cultured rat islet cell. Both nordihydroguaiaretic acid (NDGA, 20–50 μM) and BW755c (100–250μM) caused a dose-responsive inhibition of glucose-induced insulin release. This inhibitory effect occurred despite concomitant inhibition of prostaglandin E synthesis. Lipoxygenase inhibitors also impeded cyclic AMP accumulation. Insulin and cyclic AMP release induced by glucagon were also blunted. These studies suggest the hypothesis that AA released in or near the beta cell is metabolized to lipoxygenase product(s) which have feed-forward properties important to glucose- and glucagon-stimulated cyclic nucleotide accumulation and insulin release.  相似文献   

2.
Abnormal glucose handling in the proximal tubule may play an important role in the development of diabetic nephropathy. Thus, the present study was designed to examine the effect of high glucose on alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its signaling pathways in the primary cultured rabbit renal proximal tubule cells (PTCs). When PTCs were preincubated with 25 or 50 mM glucose for 4 h, 25 or 50 mM glucose significantly inhibited alpha-MG uptake, while 25 or 50 mM mannitol and L-glucose did not affect. Actinomycin D and cycloheximide did not block the effect of high glucose on alpha-MG uptake. Twenty-five millimoles glucose-induced inhibition of alpha-MG uptake was blocked by mepacrine and AACOCF(3), phospholipase A(2) (PLA(2)) inhibitors. Twenty-five millimoles of glucose, not mannitol or L-glucose, significantly increased the [(3)H]-arachidonic acid (AA) release compared to control. In addition, the 25 mM glucose-induced [(3)H]-AA release was completely blocked by mepacrine or AACOCF(3). Indomethacin, a cyclooxygenase inhibitor, blocked the high glucose-induced inhibition of alpha-MG uptake, although econazole, cytochrome P-450 a epoxygenase inhibitor, and nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, did not. On the other hand, staurosporine and bisindolylmaleimide I, protein kinase C (PKC) inhibitors, blocked 25 mM glucose-induced increase of [(3)H]-AA release and inhibition of alpha-MG uptake. However, neomycin, U 73122, and phospholipase c(PLC) inhibitors did not block the effect of 25 mM glucose on [(3)H]-AA release and alpha-MG uptake. Pretreatment of methoxyverapamil, an L-type Ca(2+) channel blocker, abolished 25 mM glucose-induced increase of [(3)H]-AA release. Indeed, 25 mM glucose increased translocation of cPLA(2) from cytosolic fraction to membrane fraction. In conclusion, the present results demonstrate that high glucose inhibits alpha-MG uptake by the increase of AA release via the activation of PKC.  相似文献   

3.
In the pancreatic islet, eicosanoids may arise from both cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid. The inclusion of inhibitors of selective steps in these pathways indicated that in cultured neonatal rat islets, arachidonic acid may be metabolised through both pathways, concurrent with insulin release stimulated by D-glucose, D-glyceraldehyde and 2-ketoisocaproate. The effects of the inhibitors suggested that the products of the lipoxygenase pathway were necessary for the stimulatory effects of nutrients to be observed. In contrast to glucose, where insulin release was stimulated in the presence of inhibitors of cyclooxygenase, the stimulatory action of D-glyceraldehyde, 2-ketoisocaproate and melittin was only minimally affected by these inhibitors, although it was inhibited by lipoxygenase inhibition. These findings support a major stimulatory role for products of the lipoxygenase pathway of arachidonic acid metabolism in nutrient-induced secretion, and a negative or modulatory role of cyclooxygenase pathway products on glucose-stimulated insulin release in the neonatal islet.  相似文献   

4.
Glucose (16.7 mM)-induced insulin secretion from isolated pancreatic islets of rats was inhibited by nordihydroguaiaretic acid (NDGA), 1-phenyl-3-pyrazolidinone (phenidone), 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline (BW755C), 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), and 2,6-di-tert-butyl-4-methylphenol (BHT). Indomethacin and aspirin, however, failed to inhibit the glucose-induced insulin secretion but rather tended to enhance it. The glucose-induced insulin secretion was inhibited by 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) (50 microM), 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) (100 microM), and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) (100 microM), but not by 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) (100 microM). Exogenous 5-HETE (10 microM) induced significant insulin secretion in a low glucose (3.3 mM) medium. Racemic 5-HETE also showed insulinotropic effect in a concentration-dependent manner with the concentrations 20 microM or above, whereas 12-HETE, 15-HETE, 15-HPETE, 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid, 5-hydroxy-6-glutathionyl-7,9,11,14-eicosatetraenoic acid, 5-hydroxy-6-cysteinylglycinyl-7,9,11,14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2 alpha failed to induce insulin secretion. Although significant insulin release was observed with arachidonic acid (greater than or equal to 100 microM), reduce cell viability was evident at 200 microM. When the 10,000 X g supernatant of isolated pancreatic islet homogenate was incubated with [3H]arachidonic acid at 37 degrees C in the presence of GSH and Ca2+, and the labeled metabolites then extracted with ethyl acetate and subjected to reverse phase high pressure liquid chromatography, several radioactive peaks, coeluted with authentic 15-, 12-, and 5-HETE, were observed. The radioactive peaks were completely suppressed by the addition of either NDGA, BW755C, or phenidone into the medium. The results support our contention i.e. the involvement of lipoxygenase product(s) in the secretory mechanism of insulin, and further suggest that 5-lipoxygenase system may play a role.  相似文献   

5.
Arachidonic acid evokes epithelium-dependent relaxations in canine airways   总被引:2,自引:0,他引:2  
Responses to arachidonate were examined in rings with and without epithelium of lobar, segmental, and subsegmental canine bronchi. Arachidonate evoked epithelium-dependent relaxations, which were less pronounced in subsegmental bronchi and abolished by indomethacin and meclofenamate. Nordihydroguairetic acid (NDGA) and nafazatrom reduced epithelium-dependent relaxations only in lobar but unmasked epithelium-independent relaxations to arachidonate in all bronchi. Prostaglandin E2 and prostacyclin relaxed all tissues similarly. In lobar bronchi without epithelium, basal release of prostaglandin E2 was reduced by indomethacin but unaffected by NDGA. Arachidonate augmented prostaglandin E2 release more in subsegmental than in lobar bronchi with epithelium; in bronchi without epithelium the rise was absent (lobar) or attenuated (subsegmental). Arachidonate augmented the release of 6-ketoprostaglandin F1 alpha more in lobar bronchi with than without epithelium; this was inhibited by indomethacin, but not NDGA. Thus arachidonate releases prostaglandin E2 (possibly produced by cyclooxygenase inaccessible to inhibitors and activated by lipoxygenase products) but not prostacyclin from the epithelium. Heterogeneity in response to arachidonate is not due to different sensitivity to, or production of, prostaglandins.  相似文献   

6.
We studied the effect of interleukin-1 alpha (IL-1) on corticotropin-releasing hormone (CRH) secretion by explanted rat hypothalami in vitro. We also assessed possible mediation of arachidonic acid metabolites on IL-1-stimulated CRH secretion, by preincubating hypothalami with the cyclooxygenase inhibitor indomethacin (INDO, 1 microM), the lipoxygenase and cyclooxygenase inhibitor eicosatetraynoic acid (ETYA, 10 microM), or the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, up to 30 microM). In additional experiments, prostaglandins (PG) E2 and F2 alpha were added to the cultures treated with INDO or ETYA. Finally, we investigated the effect of dexamethasone (DEX) on IL-1-stimulated CRH secretion. IL-1 stimulated immunoreactive CRH (iCRH) secretion by explanted hypothalami in a concentration-dependent fashion. Both INDO and ETYA inhibited IL-1-(10nM)-stimulated iCRH secretion, whereas NDGA did not have any effect. The addition of PGF2 alpha (10 nM) restored the secretion of iCRH inhibited by INDO. DEX treatment significantly inhibited IL-1-stimulated iCRH release. Our results suggest that the stimulatory effect of IL-1 on the hypothalamic CRH neuron is mediated by the cyclooxygenase metabolites of arachidonic acid, and, among others, by PGF2 alpha.  相似文献   

7.
Lipoxygenase-pathway metabolites of arachidonic acid are produced in pancreatic islets. They are are implicated in insulin release, since nonselective inhibitors of lipoxygenases inhibit glucose-induced insulin release. We studied the interplay in insulin release between glucose and selected icosanoids formed in 5-, 12- and 15-lipoxygenase pathways. Effects on immunoreactive insulin release of 10(7) to 10(6)-12-(R)-HETE, 12-(S)-HETE, hepoxilin A3, lipoxin B4, LTB4 or LTC4 were tested individually in 30-min incubations of freshly isolated young adult Wistar rat pancreatic islets, in the presence of 5.6 mM or 23 mM glucose. Basal insulin release (at 5.6 mM glucose) was stimulated by LTC4 and hepoxilin A3 (304% and 234% of controls at 5.6 mM glucose alone, respectively), inhibited by 12-(S)-HPETE (56%), and was not affected by 12-(R)-HETE, 12-(S)-HETE, lipoxin B4 or LTB4 (111%, 105%, 106% and 136%, respectively). Insulin release evoked by 23 mM glucose (190-320%) was inhibited (50-145%) by all icosanoids tested, except LTC4 (162%). We conclude that, among the lipoxygenase products tested, only leukotrienes and hepoxilin are candidates for a tonic-stimulatory influence on basal insulin release. Since glucose promotes icosanoid formation in islets, the observed inhibition of glucose-induced insulin release by lipoxygenase products suggests the existence of a negative-feedback system.  相似文献   

8.
The role of protein phosphatases in the regulation of insulin release from rat pancreatic islets was studied with protein phosphatase inhibitors, okadaic acid and calyculin A. Okadaic acid inhibited glucose- and glyceraldehyde-induced insulin release dose-dependently and also inhibited the potentiation of glucose-induced release either by adding forskolin, an activator of adenylate cyclase or by increasing K+ concentration to 25 mM. At a non-stimulatory concentration of 3 mM glucose, a high concentration (2 microM) of okadaic acid inhibited insulin release induced by high K+ or 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, but a low concentration (1 microM) of okadaic acid did not significantly inhibit TPA-induced insulin release. Calyculin A also inhibited glucose-induced insulin release, and the effect was greater than that of okadaic acid. The data suggest that protein phosphatases may play an important role in the regulation of insulin release.  相似文献   

9.
In an attempt to elucidate the possible involvements of eicosanoids in esophageal functions and disorders, we have investigated the formation of both cyclooxygenase and lipoxygenase metabolites from 14C-arachidonic acid by rabbit esophageal tissues. Homogenates of rabbit esophageal mucosa and muscularis were incubated with 14C-arachidonic acid and after ether extraction eicosanoids were separated and quantified by reverse phase high performance liquid chromatography. The predominant cyclooxygenase products were 6-keto-PGF1 alpha, PGF2 alpha, and PGE2 for mucosa and 6-keto-PGF1 alpha, and PGE2 for muscularis. The formation of these products was inhibited both by indomethacin and the dual pathway inhibitor, nordihydrogualaretic acid (NDGA). In mucosa the major eicosanoid was 12-HETE (12-hydroxyeicosatetraenoic acid) which was inhibited by NDGA but not by indomethacin which on the contrary enhanced its formation. Additionally four polar products were synthesized which appeared to be lipoxygenase-dependent as their formation was inhibited by NDGA but not by indomethacin. Muscularis produced as a minor lipoxygenase product only 12-HETE, which was inhibited by NDGA but unchanged in the presence of indomethacin. In addition, both tissues, but mucosa more than muscularis, possessed large prostaglandin catabolizing capacity. The present findings indicate that rabbit esophageal tissues can convert 14C-arachidonic acid into lipoxygenase as well cyclo-oxygenase products which may have a role in esophageal physiology and pathophysiology.  相似文献   

10.
Interleukin-1 inhibits the synthesis of collagen by fibroblasts   总被引:4,自引:0,他引:4  
Human dermal fibroblasts, exposed to human or porcine Interleukin-1, responded by an inhibition of collagen synthesis in a dose dependent manner. Incubation with Il-1 for more than 8 h was required to see an appreciable effect. The phenomenon was not dependent on the presence of serum in the culture medium. Since a stimulation of prostaglandin E2 secretion was also observed in presence of Il-1, we investigated the eventual role of arachidonic acid metabolites in the phenomenon. Inhibitors interfering with arachidonate metabolism, namely indomethacin, acetyl salicylic acid, BW 755 C and NDGA had no influence on the inhibition of collagen synthesis caused by Il-1. These data suggest that both cyclooxygenase and lipoxygenase derived metabolites of arachidonic acid are unlikely to play a role in the mechanism.  相似文献   

11.
Isolated pancreatic islets from the rat have been demonstrated by stable isotope dilution-mass spectrometric methods to synthesize the 12-lipoxygenase product 12-hydroxyeicosatetraenoic acid (12-HETE) in amounts of 1.7 to 2.8 ng per 10(3) islets. No detectable amounts of 5-HETE and only trace amounts of 15-HETE could be demonstrated by these methods. Nordihydroguaiaretic acid (NDGA) and BW755C have been demonstrated to inhibit islet 12-HETE synthesis and also to inhibit glucose-induced insulin secretion. Inhibition of insulin secretion and of 12-HETE synthesis exhibited similar dependence on the concentration of these compounds. Eicosa-5,8,11,14-tetrynoic acid (ETYA) also inhibited glucose-induced insulin secretion, as previously reported, at concentrations which inhibit islet 12-HETE synthesis. Exogenous 12-HETE partially reversed the suppression of glucose-induced insulin secretion by lipoxygenase inhibitors, but exogenous 12-hydroperoxyeicosatetraenoic acid (12-HPETE), 15-HPETE, 5-HPETE, 15-HETE, or 5-HETE did not reverse this suppression. These observations argue against the recently suggested hypothesis that islet synthesis of 5-HETE modulates insulin secretion. Suppression of glucose-induced insulin secretion by ETYA, BW755C and NDGA may be due to inhibition of the islet 12-lipoxygenase by these compounds. The possibility that other processes involved in glucose-induced insulin secretion are inhibited by ETYA, BW755C and NDGA cannot yet be excluded.  相似文献   

12.
A23187-stimulated cytostatic activity of peritoneal macrophages towards P815 tumor cells served as a model for macrophage activation: a macrophage enriched preparation, separated on the basis of cell size in a discontinuous FCS gradient column, expressed cytostatic activity when stimulated by A23187. This was inhibited dose-dependently, by AA-861 but not by nordihydroguaiaretic acid (NDGA). AA-861 inhibited 5-lipoxygenase specifically, NDGA inhibited both 5-lipoxygenase- and cyclooxygenase activity. The ratio cyclooxygenase/lipoxygenase products increased with AA-861 but not with NDGA. These results show that lipoxygenase products are necessary for expression of cytostatic activity of these arachidonic acid metabolite-producing macrophages and that the ratio cyclooxygenase/lipoxygenase metabolites plays an important role in macrophage activation.  相似文献   

13.
The signal transduction pathways through which growth factors regulate vascular cell growth are not fully understood. Recent studies suggest that metabolites of the lipoxygenase pathway may be involved in vascular cell growth. We have measured the effect of the lipoxygenase pathway inhibitors nordihydroguiaretic acid (NDGA), 5,6-dehydroarachidonic acid, and baicalein on bovine capillary endothelial cell (EC) and aortic smooth muscle cell (SMC) growth in the presence or the absence of growth factors. NDGA totally suppressed serum-stimulated EC and SMC growth as well as growth factor-stimulated proliferation over a 9-day time course. Removal of the inhibitor revealed that the inhibitory effect of NDGA was reversible and not due to cytotoxicity. The morphology of NDGA-treated EC was changed in a reversible manner from the characteristic polygonal to spindle shape. The 5-lipoxygenase inhibitor 5,6-dehydroarachidonic acid had no effect on vascular cell proliferation, but inhibition of 12-lipoxygenase with baicalein blocked both EC and SMC cell growth in a dose-dependent manner, in the presence and the absence of growth factors. Indomethacin, an inhibitor of the cyclooxygenase pathway, had no effect on EC and SMC proliferation. Quinacrine and oleyloxyethylphosphorycholine inhibition of the phospholipase A2-catalyzed release of arachidonic acid from membrane phospholipids blocked growth factor- and serum-stimulated proliferation of EC and SMC. These results suggested that arachidonic acid metabolites are critical intermediaries in the regulation of vascular cell growth.  相似文献   

14.
Piriprost and nordihydroguiaretic acid (NDGA), specific inhibitors of arachidonate lipoxygenase, inhibited phytohaemagglutinin (PHA)-stimulated breakdown of inositol lipids in human T lymphocytes. The dual inhibitors eicosatetraynoic acid (ETYA) and BW 755C, which inhibit both lipoxygenase and cyclooxygenase, also had similar actions, whereas indomethacin and acetylsalicyclic acid, which inhibit cyclooxygenase alone, did not. The effects of lipoxygenase inhibitors and dual inhibitors were reversible. These agents did not inhibit phosphatidylinositol-4,5-bisphosphate-specific phospholipase C (PIP2-PLC) in vitro. Bromophenacyl bromide, and irreversible inhibitor of phospholipase A2, also abolished PHA-stimulated inositol lipid breakdown without affecting PIP2-PLC in vitro. The results are consistent with a role for the PHA-stimulated generation of arachidonic acid and its conversion to lipoxygenase metabolites (e.g. leukotrienes and/or hydroxyeicosatetraenoic acids) as intermediate steps in the signal transduction pathway between cell-surface mitogen receptors and the stimulation of PIP2-PLC in lymphocytes.  相似文献   

15.
Atherosclerotic lesions and xanthomas are characterized by the occurrence of cholesteryl ester (CE)-laden foam cells, which partly originate from macrophages. Little is known about the role of cyclo-oxygenase or lipoxygenase metabolites of arachidonic acid in the development of foam cells. In this study we investigated the influence of prostaglandins and inhibitors of the cyclo-oxygenase or the lipoxygenase pathway on CE accumulation in cultured human monocyte-derived macrophages. Accumulation of CE was achieved by incubation of the cells with acetylated low density lipoprotein (AcLDL). The stable prostacyclin analogue ZK 36 374 and prostaglandin E2 showed no effect on cellular CE storage. Similarly, the cyclo-oxygenase inhibitor indomethacin failed to influence AcLDL-induced CE accumulation. By contrast, however, the inhibitors of lipoxygenase activity nordihydroguaiaretic acid (NDGA) and BW 755 C markedly suppressed the accumulation of CE in monocyte-derived macrophages. The inhibitory effect of NDGA was dose-dependent. Incubation of the cells with the anti-oxidant vitamin E gave no significant reduction of CE accumulation. Our results indicate that inhibition of the lipoxygenase pathway of arachidonic acid metabolism in cultured monocyte-derived macrophages effectively decreases the rate of experimentally-induced CE accumulation.  相似文献   

16.
Binucleate cells of sheep and goat fetal placentae comprise about one-fifth of the trophectodermal layer at the feto-maternal interface. When isolated and incubated in vitro they produce the steroids that are synthesized by the placenta in vivo (progesterone in sheep, 5 beta-pregnane-3 alpha,20 alpha diol in goats). This study demonstrates that progesterone synthesis in binucleate cell preparations in sheep was increased by prostaglandin (PG) E-2, nordihydroguaiaracetic acid (NDGA) and methylisobutylxanthine, but reduced by indomethacin, whereas in goats only NDGA produced any effect (an increase). None of the other compounds tested (luteinizing hormone, follicle stimulating hormone, prolactin, dibutyryl cAMP, A23187 or phorbolmyristic acetate) had any effect. Sheep binucleate cells also produced PGE-2 from arachidonic acid. These results suggest that, in sheep, products of both the cyclooxygenase (producing PGE-2) and lipoxygenase (inhibited by NDGA) pathways of arachidonic acid metabolism have regulatory roles in placental steroid synthesis, but only the lipoxygenase pathway is relevant in goats.  相似文献   

17.
Arginine-vasopressin (AVP) elicits a variety of responses in cultured rat mesangial cells, among them stimulation of prostaglandin biosynthesis and activation of Cl- channels. AVP produced an 11-fold increase over basal levels in prostaglandin E2 release from cultured mesangial cells. This response was completely inhibited by 25 microM indomethacin and 82 +/- 5% inhibited by 25 microM 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) which is a potent blocker of epithelial Cl- channels. The IC50 for NPPB inhibition of prostaglandin E2 release was 8 microM. Indomethacin and NPPB at 25 microM also inhibited AVP-stimulated cellular accumulation of prostaglandin E2 by 98% and 79 +/- 7% respectively. The inhibitory effect of NPPB was not due to interference with the cellular response to AVP since at 50 microM it did not block AVP-stimulated release of arachidonate metabolites from cells metabolically labeled with [3H]-arachidonic acid. It is suggested that NPPB inhibition of prostaglandin E2 synthesis is at the cyclooxygenase level on the basis of its structural similarity to the fenamic acid type of cyclooxygenase inhibitors.  相似文献   

18.
We compared the effects of the leukotriene (LT) D4 receptor antagonist FPL55712 and some lipoxygenase inhibitors on contractions of isolated guinea-pig trachea induced by antigen (ovalbumin, OA) and calcium ionophore A23187 in the presence of the cyclooxygenase inhibitor indomethacin (5 microM), and by arachidonic acid (AA), melittin and LTD4. FPL55712 (0.1 and 1 microM) inhibited contractions induced by AA (100 microM) and the phospholipase A2 activator melittin (3 micrograms/ml), while the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, 10 microM) was a more effective inhibitor of the melittin response than the AA response. FPL55712 inhibited contractions induced by OA (100 micrograms/ml) more than by A23187 (1 microgram/ml), and these inhibitory effects of FPL55712 were much less in the presence of l-serine-borate complex (45 mM), an inhibitor of LTC4 conversion to LTD4. NDGA (10 microM) had no significant effect on the OA response, whereas the lipoxygenase inhibitors 1-phenyl-3-pyrazolidone (phenidone, 10 microM) and 5,8,11,14-eicosatetraynoic acid (ETYA, 10 microM) clearly inhibited it. In contrast, NDGA and phenidone inhibited the A23187 response, but ETYA had no effect on it. FPL55712, phenidone and ETYA, but not NDGA, had a large inhibitory effect on LTD4-induced contractions, but these inhibitors had no effect on histamine-induced contractions. These results suggest that in the guinea-pig trachea inhibitors of LTD4-induced contractions decrease antigen-induced contractions, whereas lipoxygenase inhibitors reduce the contraction to A23187.  相似文献   

19.
Low-level chemiluminescence (C) is thought to be an index of oxidant stress. We measured the relationship between low-level C, pulmonary arterial pressure, and perfusate concentration of thromboxane B2 (TxB2) in isolated perfused rabbit lungs during challenge with tert-butyl hydroperoxide (t-bu-OOH). We also measured glutathione release as another index of oxidant stress. We found that C was correlated with each variable, suggesting that oxidant stress measured by C and by glutathione release stimulated TxB2 production and pulmonary vasoconstriction. We also investigated the contribution of active O2 metabolites produced by prostaglandin (PG) peroxidase to oxidant stress by studying the effects of t-bu-OOH before and after the use of cyclooxygenase and lipoxygenase inhibitors. We found that C was augmented after inhibition, perhaps due to metabolism of t-bu-OOH by peroxidases of both arachidonic acid (AA) metabolic pathways in the absence of their normal substrates. We studied phenylbutazone, thought to inhibit peroxidases, and AA. C during t-bu-OOH administration was not augmented after phenylbutazone and was markedly inhibited after AA administration perhaps because AA competes with t-bu-OOH. To further study the role of peroxidases we pretreated the lungs with the antioxidant dithiothreitol, which inhibits peroxidases involved in both the cyclooxygenase and lipoxygenase pathways. Dithiothreitol nearly abolished C produced by t-bu-OOH and also prevented the increased light caused by eicosatetrynoic acid. We directly tested the hypothesis that C occurred as a result of the interaction of t-bu-OOH and the cyclooxygenase and lipoxygenase enzymes; we measured C when t-bu-OOH was added to purified PGH2 synthase or soybean lipoxygenase. The combination of t-bu-OOH with PGH2 synthase or lipoxygenase led to C that was inhibited by dithiothreitol and by the antioxidant phenol. These results suggest that enzymes involved in AA metabolism can interact with t-bu-OOH and that the action of these enzymes on t-bu-OOH leads to C. The results may mean that lipid peroxides can indirectly contribute to tissue oxidant stress due to production of active O2 metabolites as by-products of their metabolism by AA peroxidases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号