首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteolipid protein (Plp) gene promoter is responsible for driving expression of one of the major components of myelin--PLP and its splice variant DM-20. Both products are classically thought to express predominantly in oligodendrocytes. However, accumulating evidence suggests Plp expression is more widespread than previously thought. In an attempt to create a mouse model for inducing oligodendrocyte-specific gene deletions, we have generated transgenic mice expressing a Cre recombinase cDNA under control of the mouse Plp promoter. We demonstrate Plp promoter driven Cre expression is restricted predominantly to mature oligodendrocytes of the central nervous system (CNS) at postnatal day 28. However, crosses into the Rosa26(LacZ) and mT/mG reporter mouse lines reveal robust and widespread Cre activity in neuronal tissues at E15.5 and E10.5 that is not strictly oligodendrocyte lineage specific. By P28, all CNS tissues examined displayed high levels of reporter gene expression well outside of defined white matter zones. Importantly, our study reinforces the emerging idea that Plp promoter activity is not restricted to the myelinating cell lineage, but rather, has widespread activity both during embryonic and early postnatal development in the CNS. Specificity of the promoter to the oligodendrocyte cell lineage, as shown through the use of a tamoxifen inducible Plp-CreER(t) line, occurs only at later postnatal stages. Understanding the temporal shift in Plp driven expression is of consequence when designing experimental models to study oligodendrocyte biology.  相似文献   

2.
Tcf21 is a Class II bHLH family member with essential roles in the formation of the lungs, kidneys, gonads, spleen, and heart. Here, we report the utility of a mouse line with targeted insertion of a tamoxifen-inducible Cre recombinase, MerCreMer at the Tcf21 locus. This mouse line will permit the inducible expression of Cre recombinase in Tcf21-expressing cells. Using ROSA26 reporter mice, we show that Cre recombinase is specifically and robustly activated in multiple Tcf21-expressing tissues during embryonic and postnatal development. The expression profile in the kidney is particularly dynamic with the ability to cause recombination in mesangial cells at one time of induction and podocytes at another time. These features make the Tcf21-driven inducible Cre line (Tcf21(iCre) ) a valuable genetic tool for spatiotemporal gene function analysis and lineage tracing of cells in the heart, kidney, cranial muscle, and gonads.  相似文献   

3.
In recent years, the Cre integrase from bacteriophage P1 has become an essential tool for conditional gene activation and/or inactivation in mouse. In an earlier report, we described a fusion protein between Cre and a mutated form of the ligand binding domain of the estrogen receptor (Cre-ER) that renders Cre activity tamoxifen (TM) inducible, allowing for conditional modification of gene activity in the mammalian neural tube in utero. In the current work, we have generated a transgenic mouse line in which Cre-ER is ubiquitously expressed to permit temporally regulated Cre-mediated recombination in diverse tissues of the mouse at embryonic and adult stages. We demonstrate that a single, intraperitoneal injection of TM into a pregnant mouse at 8.5 days postcoitum leads to detectable recombination in the developing embryo within 6 h of injection and efficient recombination of a reporter gene in derivatives of all three germ layers within 24 h of injection. In addition, by varying the dose of TM injected, the percentage of cells undergoing a recombination event in the embryo can be controlled. Dose-dependent excision induced by TM was also possible in diverse tissues in the adult mouse, including the central nervous system, and in cultured cells derived from the transgenic mouse line. This inducible Cre system will be a broadly useful tool to modulate gene activity in mouse embryos, adults, and culture systems where temporal control is an important consideration.  相似文献   

4.
Cre-mediated site-specific recombination allows conditional transgene expression or gene knockouts in mice. Inducible Cre recombination systems have been developed to bypass initial embryonic lethal phenotypes and provide access to later embryonic or adult phenotypes. We have produced Cre transgenic mice in which excision is tamoxifen inducible and occurs in a widespread mosaic pattern. We utilized our Cre excision reporter system combined with an embryonic stem (ES) cell screen to identify ES cell clones with undetectable background Cre activity in the absence of tamoxifen but efficient excision upon addition of tamoxifen. The CreER transgenic mouse lines derived from the ES cells were tested using the Z/AP and Z/EG Cre reporter lines. Reporter gene expression indicated Cre excision was maximal in midgestation embryos by 2 days after tamoxifen administration, with an overall efficiency of 5-10% of cells with Cre excision. At 3 days after tamoxifen treatment most reporter gene expression marked groups of cells, suggesting an expansion of cells with Cre excision, and the proportion of cells with Cre excision was maintained. In adults, Cre excision was also observed with varying efficiencies in all tissues after tamoxifen treatment.  相似文献   

5.
Tissue-specific gene ablation is accomplished by combining conventional gene targeting approaches with site-specific recombinases such as the Cre/loxP system. Despite the use of a cardiac-specific rat myosin light chain II promoter, our transgenic line (CRE3) had little or no Cre expression in the heart; however, strong Cre activity was detected in the brain as early as gestation day E11.5. This was determined by several methods including crossing our mouse line with a lacZ indicator line (ROSA26). Transgenic Cre, in this mouse line, mediated DNA recombination of loxP-flanked genes selectively in neurons throughout the gray matter of the brain, cerebellum, spinal cord, as well as retina, dorsal, and sympathetic ganglia. Cre protein was also detected by immunohistochemistry exclusively in neurons, but not in other types of cells or tissues. Thus, our transgenic CRE3 mice provide pan-neuronal expression of CRE for carrying out conditional deletion of genes in neurons and their progenitors.  相似文献   

6.
RNA interference (RNAi) is a simple and powerful tool widely used for studying gene function in a number of species. Recently, inducible regulation of RNAi in mammalian cells using either tetracycline- or ecdysone-responsive systems has been developed to prevent potential lethality or non-physiological responses associated with persistent suppression of genes that are essential for cell survival or cell cycle progression. Here we show that the inducible regulation of RNAi also can be achieved by using a Cre-LoxP approach. We demonstrate that the insertion of a loxP-flanked neomycin cassette into RNA polymerase III promoter, which controls a vector-based RNAi unit, impairs the promoter activity. However, the expression of RNAi construct can be completely restored upon the removal of the neo cassette using a tamoxifen inducible Cre construct. We show that this system works with high efficiency in suppression of two endogenous genes, Fgfr2 and Survivin, in mouse embryonic stem (ES) cells, as evidenced by the decrease of levels of gene expression, reduced cell proliferation and colony formation. This system provides a potentially important yet simple approach to establish mutant mouse strains for functional study at defined stages upon turning on the inducible switches controlled by the Cre-LoxP system.  相似文献   

7.
Postnatal cartilage development and growth are regulated by key growth factors and signaling molecules. To fully understand the function of these regulators, an inducible and chondrocyte-specific gene deletion system needs to be established to circumvent the perinatal lethality. In this report, we have generated a transgenic mouse model (Col2a1-CreER(T2)) in which expression of the Cre recombinase is driven by the chondrocyte-specific col2a1 promoter in a tamoxifen-inducible manner. To determine the specificity and efficiency of the Cre recombination, we have bred Col2a1-CreER(T2) mice with Rosa26R reporter mice. The X-Gal staining showed that the Cre recombination is specifically achieved in cartilage tissues with tamoxifen-induction. In vitro experiments of chondrocyte cell culture also demonstrate the 4-hydroxy tamoxifen-induced Cre recombination. These results demonstrate that Col2a1-CreER(T2) transgenic mice can be used as a valuable tool for an inducible and chondrocyte-specific gene deletion approach.  相似文献   

8.
RNA interference (RNAi) is a simple and powerful tool widely used for studying gene function in a number of species. Recently, inducible regulation of RNAi in mammalian cells using either tetracycline- or ecdysone-responsive systems has been developed to prevent potential lethality or non-physiological responses associated with persistent suppression of genes that are essential for cell survival or cell cycle progression. Here we show that the inducible regulation of RNAi also can be achieved by using a Cre–LoxP approach. We demonstrate that the insertion of a loxP-flanked neomycin cassette into RNA polymerase III promoter, which controls a vector-based RNAi unit, impairs the promoter activity. However, the expression of RNAi construct can be completely restored upon the removal of the neo cassette using a tamoxifen inducible Cre construct. We show that this system works with high efficiency in suppression of two endogenous genes, Fgfr2 and Survivin, in mouse embryonic stem (ES) cells, as evidenced by the decrease of levels of gene expression, reduced cell proliferation and colony formation. This system provides a potentially important yet simple approach to establish mutant mouse strains for functional study at defined stages upon turning on the inducible switches controlled by the Cre–LoxP system.  相似文献   

9.
10.
11.
12.
Summary: The versatility of the bacteriophage Cre/LoxP system is dependent on the availability of a spectrum of tissue-specific Cre transgenic mice to address a host of biological questions. In this paper, we report on the generation of an inducible Tie2Cre transgenic mouse line that facilitates gene targeting exclusively in endothelial cells. The temporal manner of recombination is feasible through the use of a Cre-estrogen receptor fusion protein ER(T2) and was, in practical terms, achieved by feeding the animals the estrogen antagonist tamoxifen orally for 5 weeks. High efficiency of recombination was found in the vast majority of endothelial cell populations examined, as monitored by an EGFP reporter mouse line. Critically, no EGFP expression was observed in any uninduced mice. This inducible Cre line will be a very beneficial asset to investigating the role of endothelial specific genes in the adult mouse and to induce transgenes in the endothelium in an extremely efficient manner. genesis 33:191-197, 2002.  相似文献   

13.
Inducible Cre recombination is a powerful technology that allows for spatial and temporal modulation of gene expression in vivo. Diseases of the cardiac conduction system (CCS) pose a significant clinical burden but are not currently well understood at the molecular level. To enable inducible recombination in the murine CCS, we created a minK:CreERT(2) bacterial artificial chromosome (BAC) transgenic mouse line. Cre activity is present after tamoxifen administration in the atrioventricular (AV) node, AV bundle, and bundle branches of adult transgenic mice. We anticipate that by enabling inducible recombination specifically in the AV node, bundle, and bundle branches, minK:CreERT(2) BAC transgenic mice will prove useful in advancing our understanding of CCS disease and function.  相似文献   

14.
Here we describe a triple transgenic mouse system, which combines the tissue specificity of any Cre-transgenic line with the inducibility of the reverse tetracycline transactivator (rtTA)/tetracycline-responsive element (tet-O)-driven transgenes. To ensure reliable rtTA expression in a broad range of cell types, we have targeted the rtTA transgene into the ROSA26 locus. The rtTA expression, however, is conditional to a Cre recombinase-mediated excision of a STOP region from the ROSA26 locus. We demonstrate the utility of this technology through the inducible expression of the vascular endothelial growth factor (VEGF-A) during embryonic development and postnatally in adult mice. Our results of adult induction recapitulate several different hepatic and immune cell pathological phenotypes associated with increased systemic VEGF-A protein levels. This system will be useful for studying genes in which temporal control of expression is necessary for the discovery of the full spectrum of functions. The presented approach abrogates the need to generate tissue-specific rtTA transgenes for tissues where well-characterized Cre lines already exist.  相似文献   

15.
We report a knock-in mouse expressing Cre recombinase from the translational initiation site (ATG) of the endogenous L7/Pcp-2 gene. The resulting Cre expression matches the pattern of L7/Pcp-2 expression that is restricted to cerebellar Purkinje cells and retinal cells. Moreover, the Cre mouse showed no significant behavioral abnormality. Thus, our novel Cre mouse can be used for generation of Purkinje cells and retinal cell-specific gene expression and/or knockout in mouse using the Cre/loxP system.  相似文献   

16.
17.
There have been few studies on the regulatory elements of the Sry gene, mainly because no Sry-expressing cell lines have yet been established. This paper describes a useful tool for investigating the regulation and upstream region of Sry by means of the in vitro Cre/loxP system. Using plasmids containing the 9.9 kb mouse genomic Sry previously shown to induce testis development in XX transgenic mice, we constructed a Sry/Cre fusion gene plasmid in which Cre expression is controlled by the 5' and 3' untranslated regions of mouse Sry. To distinguish between male and female gonads of 11.5 days post-coitus (d.p.c.) fetuses, double transgenic fetuses carrying both the CAG (cytomegalovirus enhancer and beta-actin promoter)/loxP/lacZ transgene on the autosome and the green fluorescent protein transgene ubiquitously expressed on the Y chromosome were produced by crossing between two transgenic mouse lines. When Sry/Cre plasmids were transfected into the cells that had been prepared from the gonads, brains and livers of double transgenic fetuses, only a small number of X-gal-stained cells were detected among the primary cultured cells from male and female gonads, and none were detected among the cells from the other tissues. The X-gal-positive cells were negative for alkaline phosphatase, indicating that these cells were somatic cells expressing Sry. The Sry/Cre plasmids with a 0.4 kb upstream region of Sry yielded a large number of X-gal-positive cells in the cells from gonads, including various tissues of 11.5 d.p.c. fetuses, indicating the loss of the tissue-specific expression of Sry. The Sry/Cre with a 1.4 kb upstream region maintained tissue-specific activity of Sry. The results indicate that the present in vitro Cre/loxP system using transgenic mice is a simple and useful system for investigating the regulatory element of sex determination-related genes, including Sry.  相似文献   

18.
19.
20.
The Connexin-40 (Cx40) gene encodes a gap junction protein that plays an important role in cell-cell communication in cardiomyocytes of the atria and cardiac conduction system and endothelial cells of large arteries. During embryonic development, Cx40 expression is tightly regulated and correlates with progressive ventricular conduction system (VCS) differentiation and vessel function. We have generated Cx40(Cre) mice carrying a CreERT2-IRESmRFP cassette by targeted recombination. In Cx40(Cre) mice, the pattern of expression of RFP is identical to that of the endogenous Cx40 gene and a Cx40(GFP) allele. Using a LacZ-based Cre reporter mouse line, tamoxifen dependent Cre recombination was observed throughout the spatio-temporal profile of Cx40 expression in the VCS and arterial endothelial cells. Cx40(Cre) mice can therefore be used to direct inducible genetic modification in Cx40 expressing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号