首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Acetylcholinesterase (AChE) expression is markedly affected in Alzheimer's disease (AD). AChE activity is lower in most regions of the AD brain, but it is increased within and around amyloid plaques. We have previously shown that AChE expression in P19 cells is increased by the amyloid β protein (Aβ). The aim of this study was to investigate AChE expression using a transgenic mouse model of Aβ overproduction. The β-actin promoter was used to drive expression of a transgene encoding the 100-amino acid C-terminal fragment of the human amyloid precursor protein (APP CT100). Analysis of extracts from transgenic mice revealed that the human sequences of full-length human APP CT100 and Aβ were overexpressed in the brain. Levels of salt-extractable AChE isoforms were increased in the brains of APP CT100 mice. There was also an increase in amphiphilic monomeric form (GA1) of AChE in the APP CT100 mice, whereas other isoforms were not changed. An increase in the proportion of GA1 AChE was also detected in samples of frontal cortex from AD patients. Analysis of AChE by lectin binding revealed differences in the glycosylation pattern in APP CT100 mice similar to those observed in frontal cortex samples from AD. The results are consistent with the possibility that changes in AChE isoform levels and glycosylation patterns in the AD brain may be a direct consequence of altered APP metabolism.  相似文献   

2.
Aggregation of amyloid-β (Aβ) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Aβ aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Aβ42 fibrillization and initiate formation of non-fibrillar Aβ42 aggregates, and that the inhibitory effect of Zn(II) (IC50 = 1.8 μmol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Aβ42 aggregation. Moreover, their addition to preformed aggregates initiated fast Aβ42 fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Aβ42. H13A and H14A mutations in Aβ42 reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-β core structure within region 10–23 of the amyloid fibril. Cu(II)-Aβ42 aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Aβ42 aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Aβ aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.  相似文献   

3.
Abstract: Amyloid precursor protein (APP) gives rise by proteolytic processing to the amyloid β peptide (Aβ) found abundantly in cerebral senile plaques of individuals with Alzheimer's disease. APP is highly expressed in the brain. To assess the source of cerebral Aβ, the metabolism of APP was investigated in the major cell types of the newborn rat cerebral cortex by pulse/chase labeling and immunoprecipitation of the APP and APP metabolic fragments. We describe a novel C-terminally truncated APP isoform that appears to be made only in neurons. The synthesis, degradation, and metabolism of APP were quantified by phosphorimaging in neurons, astrocytes, and microglia. The results show that although little APP is metabolized through the amyloidogenic pathways in each of the three cultures, neurons appear to generate more Aβ than astrocytes or microglia.  相似文献   

4.
A chronic high fat Western diet (WD) promotes a variety of morbidity factors although experimental evidence for short-term WD mediating brain dysfunction remains to be elucidated. The amyloid precursor protein and presenilin-1 (APP × PS1) knock-in mouse model has been demonstrated to recapitulate some key features of Alzheimer's disease pathology, including amyloid-β (Aβ) pathogenesis. In this study, we placed 1-month-old APP × PS1 mice and non-transgenic littermates on a WD for 4 weeks. The WD resulted in a significant elevation in protein oxidation and lipid peroxidation in the brain of APP × PS1 mice relative to non-transgenic littermates, which occurred in the absence of increased Aβ levels. Altered adipokine levels were also observed in APP × PS1 mice placed on a short-term WD, relative to non-transgenic littermates. Taken together, these data indicate that short-term WD is sufficient to selectively promote cerebral oxidative stress and metabolic disturbances in APP × PS1 knock-in mice, with increased oxidative stress preceding alterations in Aβ. These data have important implications for understanding how WD may potentially contribute to brain dysfunction and the development of neurodegenerative disorders such as Alzheimer's disease.  相似文献   

5.
Increasing evidence suggests that the deposition of amyloid plaques, composed primarily of the amyloid-β protein (Aβ), within the cerebrovasculature is a frequent occurrence in Alzheimer's disease and may play a significant role in disease progression. Accordingly, the pathogenic mechanisms by which Aβ can alter vascular function may have therapeutic implications. Despite observations that Aβ elicits a number of physiological responses in endothelial cells, ranging from alteration of protein expression to cell death, the Aβ species accountable for these responses remains unexplored. In the current study, we show that isolated soluble Aβ aggregation intermediates activate human brain microvascular endothelial cells for both adhesion and subsequent transmigration of monocyte cells in the absence of endothelial cell death and monolayer disruption. In contrast, unaggregated Aβ monomer and mature Aβ fibril fail to induce any change in endothelial adhesion or transmigration. Correlations between average Aβ aggregate size and observed increases in adhesion illustrate that smaller soluble aggregates are more potent activators of endothelium. These results support previous studies demonstrating heightened neuronal activity of soluble Aβ aggregates, including Aβ-derived diffusible ligands, oligomers, and protofibrils, and further show that soluble aggregates also selectively exhibit activity in a vascular cell model.  相似文献   

6.
Abstract: Alzheimer's disease (AD) is identified by the accumulation of amyloid plaques, neurofibrillary degeneration, and the accompanying neuronal loss. AD amyloid assembles into compact fibrous deposits from the amyloid β(Aβ) protein, which is a proteo-lytic fragment of the membrane-associated amyloid precursor protein. To examine the effects of amyloid on neuron growth, a hybrid mouse motoneuron cell line (NSC34) exhibiting spontaneous process formation was exposed to artificial "plaques" created from aggregated synthetic Aβ peptides. These correspond to full-length Aβ residues 1–40 (Aβ1–40), an internal β-sheet region comprising residues 11–28 (Aβ11–28), and a proposed toxic fragment comprising residues 25–35 (Aβ25–35). Fibers were immobilized onto culture dishes, and addition of cells to these in vitro plaques revealed that Aβ was not a permissive substrate for cell adhesion. Neurites in close contact with these deposits displayed abnormal swelling and a tendency to avoid contact with the Aβ fibers. In contrast, Aβ did not affect the adhesion or growth of rat astrocytes, implicating a specific Aβ-neuron relationship. The inhibitory effects were also unique to Aβ as no response was observed to deposits of pancreatic islet amyloid poly-peptide fibers. Considering the importance of cell adhesion in neurite elongation and axonal guidance, the antiadhesive properties of Aβ amyloid plaques found in vivo may contribute to the neuronal loss responsible for the clinical manifestations of AD.  相似文献   

7.
Abstract: Increased production of amyloid β peptide (Aβ) is highly suspected to play a major role in Alzheimer's disease (AD) pathogenesis. Because Aβ deposits in AD senile plaques appear uniquely in the brain and are fairly restricted to humans, we assessed amyloid precursor protein (APP) metabolism in primary cultures of the cell types associated with AD senile plaques: neurons, astrocytes, and microglia. We find that neurons secrete 40% of newly synthesized APP, whereas glia secrete only 10%. Neuronal and astrocytic APP processing generates five C-terminal fragments similar to those observed in human adult brain, of which the most amyloidogenic higher-molecular-weight fragments are more abundant. The level of amyloidogenic 4-kDa Aβ exceeds that of nonamyloidogenic 3-kDa Aβ in both neurons and astrocytes. In contrast, microglia make more of the smallest C-terminal fragment and no detectable Aβ. We conclude that human neurons and astrocytes generate higher levels of amyloidogenic fragments than microglia and favor amyloidogenic processing compared with previously studied culture systems. Therefore, we propose that the higher amyloidogenic processing of APP in neurons and astrocytes, combined with the extended lifespan of individuals, likely promotes AD pathology in aging humans.  相似文献   

8.
Accumulation of neurotoxic amyloid-β (Aβ) is central to the pathology of Alzheimer's disease (AD). Elucidating the mechanisms of Aβ accumulation will therefore expedite the development of Aβ-targeting AD therapeutics. We examined activity of an Aβ-degrading protease (matrix metalloprotease 2) to investigate whether biochemical factors consistent with conditions in the AD brain contribute to Aβ accumulation by altering Aβ sensitivity to proteolytic degradation. An Aβ amino acid mutation found in familial AD, Aβ interactions with zinc (Zn), and increased Aβ hydrophobicity all strongly prevented Aβ degradation. Consistent to all of these factors is the promotion of specific Aβ aggregates where the protease cleavage site, confirmed by mass spectrometry, is inaccessible within an amyloid structure. These data indicate decreased degradation due to amyloid formation initiates Aβ accumulation by preventing normal protease activity. Zn also prevented Aβ degradation by the proteases neprilysin and insulin degrading enzyme. Treating Zn-induced Aβ amyloid with the metal-protein attenuating compound clioquinol reversed amyloid formation and restored the peptide's sensitivity to degradation by matrix metalloprotease 2. This provides new data indicating that therapeutic compounds designed to modulate Aβ-metal interactions can inhibit Aβ accumulation by restoring the catalytic potential of Aβ-degrading proteases.  相似文献   

9.
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme of the kynurenine pathway of tryptophan metabolism, ultimately leading to production of the excitotoxin quinolinic acid (QUIN) by monocytic cells. In the Tg2576 mouse model of Alzheimer's disease, systemic inflammation induced by lipopolysaccharide leads to an increase in IDO expression and QUIN production in microglia surrounding amyloid plaques. We examined whether the IDO over-expression in microglia could be mediated by brain proinflammatory cytokines induced during the peripheral inflammation using THP-1 cells and peripheral blood mononuclear cells (PBMC) as models for microglia. THP-1 cells pre-treated with 5–25 μM amyloid β peptide (Aβ) (1–42) but not with Aβ (1–40) or Aβ (25–35) became an activated state as indicated by their morphological changes and enhanced adhesiveness. IDO expression was only slightly increased in the reactive cells but strongly enhanced following treatment with proinflammatory cytokine interferon-γ (IFN-γ) but not with interleukin-1β, tumor necrosis factor-α, or interleukin-6 at 100 U/mL. The concomitant addition of Aβ (1–42) with IFN-γ was totally ineffective, indicating that Aβ pre-treatment is prerequisite for a high IDO expression. The priming effect of Aβ (1–42) for the IDO induction was also observed for PBMC. These findings suggest that IFN-γ induces IDO over-expression in the primed microglia surrounding amyloid plaques.  相似文献   

10.
Abstract: Various data suggest that Alzheimer's disease results from the accumulation of amyloid β (Aβ) peptide fibrils and the consequent formation of senile plaques in the cognitive regions of the brain. One approach to lowering senile plaque burden in Alzheimer's disease brain is to identify compounds that will increase the degradation of existing amyloid fibrils. Previous studies have shown that proteoglycans and serum amyloid P (SAP), molecules that localize to senile plaques, bind to Aβ fibrils and protect the amyloid peptide from proteolytic breakdown. Therefore, molecules that prevent the binding of SAP and/or proteoglycans to fibrillar Aβ might increase plaque degradation and prove useful in the treatment of Alzheimer's disease. The nature of SAP and proteoglycan binding to Aβ is defined further in the present study. SAP binds to both fibrillar and nonfibrillar forms of Aβ. However, only the former is rendered resistant to proteolysis after SAP association. It is interesting that both SAP and proteoglycan binding to Aβ fibrils can be inhibited by glycosaminoglycans and Congo red. Unexpectedly, Congo red protects fibrillar Aβ from breakdown, suggesting that this compound and other structurally related molecules are unlikely to be suitable for use in the treatment of Alzheimer's disease.  相似文献   

11.
Abstract: One of the characteristic changes that occurs in Alzheimer's disease is the loss of acetylcholinesterase (AChE) from both cholinergic and noncholinergic neurons of the brain. However, AChE activity is increased around amyloid plaques. This increase in AChE may be of significance for therapeutic strategies using AChE inhibitors. The aim of this study was to examine the effect of amyloid β-protein (Aβ), the major component of amyloid plaques, on AChE expression. Aβ peptides spanning residues 1–40 or 25–35 increased AChE activity in P19 embryonal carcinoma cells. A peptide containing a scrambled Aβ25–35 sequence did not stimulate AChE expression. To examine the possibility that the increase in AChE expression was mediated by an influx of calcium through voltage-dependent calcium channels (VDCCs), drugs acting on VDCCs were tested for their effects. Inhibitors of L-type VDCCs (diltiazem, nifedipine, and verapamil), but not N- or P- or Q-type VDCCs, resulted in a decrease in AChE expression. Agonists of L-type VDCCs (maitotoxin and S (−)-Bay K 8644) increased AChE expression. As L-type VDCCs are known to be modulated by cyclic AMP-dependent protein kinase, the effect of the adenylate cyclase activator forskolin was also examined. Forskolin stimulated AChE expression, an action that was blocked by the L-type VDCC antagonist nifedipine. The Aβ25–35-induced increase in AChE expression was mediated by an L-type VDCC, as the effect was also blocked by nifedipine. The results suggest that the increase in AChE expression around amyloid plaques could be due to a disturbance in calcium homeostasis involving the opening of L-type VDCCs.  相似文献   

12.
One hallmark of Alzheimer disease (AD) is the extracellular deposition of the amyloid β-peptide (Aβ) in senile plaques. Two major forms of Aβ are produced, 40 (Aβ40) and 42 (Aβ42) residues long. The most abundant form of Aβ is Aβ40, while Aβ42 is more hydrophobic and more prone to form toxic oligomers and the species of particular importance in early plaque formation. Thus, the length of the hydrophobic C-terminal seems to be very important for the oligomerization and neurotoxicity of the Aβ peptide. Here we investigated which Aβ species are deposited in AD brain. We analyzed plaque cores, prepared from occipital and frontal cortex, from sporadic and familial AD cases and performed a quantitative study using Aβ standard peptides. Cyanogen bromide was used to generate C-terminal Aβ fragments, which were analyzed by HPLC coupled to an electrospray ionisation ion trap mass spectrometer. We found a longer peptide, Aβ43, to be more frequent than Aβ40. No variants longer than Aβ43 could be observed in any of the brains. Immunohistochemistry was performed and was found to be in line with our findings. Aβ1-43 polymerizes rapidly and we suggest that this variant may be of importance for AD.  相似文献   

13.
Abstract: The principal constituent of amyloid plaques found in the brains of individuals with Alzheimer's disease (AD) is a 39–42-amino-acid protein, amyloid β protein (Aβ). This study examined whether the measurement of Aβ levels in CSF has diagnostic value. There were 108 subjects enrolled in this prospective study: AD (n = 39), non-AD controls (dementing diseases/syndromes; n = 20), and other (n = 49). CSF was obtained by lumbar puncture, and Aβ concentrations were determined using a dual monoclonal antibody immunoradiometric sandwich assay. The mean Aβ value for the AD group (15.9 ± 6.8 ng/ml) was not significantly different from that for the non-AD control group (13.0 ± 7.1 ng/ml; p = 0.07), and substantial overlap in results were observed. Aβ values did not correlate with age ( r = −0.05, p = 0.59), severity of cognitive impairment ( r = 0.22, p = 0.21), or duration of AD symptoms ( r = 0.14, p = 0.45). These findings are in conflict with other reports in the literature; discrepant results could be due to the instability of Aβ in CSF. Aβ immunoreactivity decays rapidly under certain conditions, particularly multiple freeze/thaw cycles. Use of a stabilizing sample treatment buffer at the time of lumbar puncture allows storage of CSF without loss of Aβ reactivity. In conclusion, the total CSF Aβ level is not a useful marker for current diagnosis of AD.  相似文献   

14.
The primary molecules for mediating the innate immune response are the Toll-like family of receptors (TLRs). Recent work has established that amyloid-beta (Aβ) fibrils, the primary components of senile plaques in Alzheimer's disease (AD), can interact with the TLR2/4 accessory protein CD14. Using antibody neutralization assays and tumor necrosis factor alpha release in the human monocytic THP-1 cell line, we determined that both TLR2 and TLR4 mediated an inflammatory response to aggregated Aβ(1–42). This was in contrast to exclusive TLR ligands lipopolysaccharide (LPS) (TLR4) and tripalmitoyl cysteinyl seryl tetralysine (Pam3CSK4) (TLR2). Atomic force microscopy imaging showed a fibrillar morphology for the proinflammatory Aβ(1–42) species. Pre-treatment of the cells with 10 μg/mL of a TLR2-specific antibody blocked ∼50% of the cell response to fibrillar Aβ(1–42), completely blocked the Pam3CSK4 response, and had no effect on the LPS-induced response. A TLR4-specific antibody (10 μg/mL) blocked ∼35% of the cell response to fibrillar Aβ(1–42), completely blocked the LPS response, and had no effect on the Pam3CSK4 response. Polymyxin B abolished the LPS response with no effect on Aβ(1–42) ruling out bacterial contamination of the Aβ samples. Combination antibody pre-treatments indicated that neutralization of TLR2, TLR4, and CD14 together was much more effective at blocking the Aβ(1–42) response than the antibodies used alone. These data demonstrate that fibrillar Aβ(1–42) can trigger the innate immune response and that both TLR2 and TLR4 mediate Aβ-induced tumor necrosis factor alpha production in a human monocytic cell line.  相似文献   

15.
Acetylcholinesterase inhibitors (AChE-inhibitors) are used for the treatment of Alzheimer's disease. Recently, the AChE-inhibitor donepezil was found to have neuroprotective effects. However, the protective mechanisms of donepezil have not yet been clearly identified. We investigated the neuroprotective effects of donepezil and other AChE-inhibitors against amyloid-β1–42 (Aβ42)-induced neurotoxicity in rat cortical neurons. To evaluate the neuroprotective effects of AChE-inhibitors, primary cultured cortical neurons were pre-treated with several concentrations of AChE-inhibitors for 24 h and then treated with 20 μM Aβ42 for 6 h. In addition to donepezil, other AChE-inhibitors (galantamine and huperizine A) also showed increased neuronal cell viability against Aβ42 toxicity in a concentration-dependent manner. However, we demonstrated that donepezil has a more potent effect in inhibiting glycogen synthase kinase-3 (GSK-3) activity compared with other AChE-inhibitors. The neuroprotective effects of donepezil were blocked by LY294002 (10 μM), a phosphoinositide 3 kinase inhibitor, but only partially by mecamylamine (10 μM), a blocker of nicotinic acetylcholine receptors. Additionally, donepezil's neuroprotective mechanism was related to the enhanced phosphorylation of Akt and GSK-3β and reduced phosphorylation of tau and glycogen synthase. These results suggest that donepezil prevents Aβ42-induced neurotoxicity through the activation of phosphoinositide 3 kinase/Akt and inhibition of GSK-3, as well as through the activation of nicotinic acetylcholine receptors.  相似文献   

16.
Pharmacological modulation of the GABAA receptor has gained increasing attention as a potential treatment for central processes affected in Alzheimer disease (AD), including neuronal survival and cognition. The proteolytic cleavage of the amyloid precursor protein (APP) through the α-secretase pathway decreases in AD, concurrent with cognitive impairment. This APP cleavage occurs within the β-amyloid peptide (Aβ) sequence, precluding formation of amyloidogenic peptides and leading to the release of the soluble N-terminal APP fragment (sAPPα) which is neurotrophic and procognitive. In this study, we show that at nanomolar-low micromolar concentrations, etazolate, a selective GABAA receptor modulator, stimulates sAPPα production in rat cortical neurons and in guinea pig brains. Etazolate (20 nM–2 μM) dose-dependently protected rat cortical neurons against Aβ-induced toxicity. The neuroprotective effects of etazolate were fully blocked by GABAA receptor antagonists indicating that this neuroprotection was due to GABAA receptor signalling. Baclofen, a GABAB receptor agonist failed to inhibit the Aβ-induced neuronal death. Furthermore, both pharmacological α-secretase pathway inhibition and sAPPα immunoneutralization approaches prevented etazolate neuroprotection against Aβ, indicating that etazolate exerts its neuroprotective effect via sAPPα induction. Our findings therefore indicate a relationship between GABAA receptor signalling, the α-secretase pathway and neuroprotection, documenting a new therapeutic approach for AD treatment.  相似文献   

17.
Brain Expression of Apolipoproteins E, J, and A-I in Alzheimer's Disease   总被引:4,自引:1,他引:3  
Abstract: Inheritance of the ε4 allele of apolipoprotein (apo) E is associated with increased risk of Alzheimer's disease (AD) and with increased β-amyloid peptide (Aβ) deposition in the cortex. Apo E is a member of a family of exchangeable apos, characterized by the presence of amphipathic α-helical segments that allow these molecules to act as surfactants on the surface of lipoprotein particles. Two members of this family, apo E and apo J, have been shown to bind soluble Aβ, and both are associated with senile plaques in the AD cortex. We now have studied the pattern of brain apo expression and found that five members of this class are present: apo A-I, A-IV, D, E, and J. By contrast, apos A-II, B, and C-II were not detectable. Immunohistochemistry revealed that, in addition to apo E and apo J, apo A-I immunostained occasional senile plaques in AD cortex. Immunoblot analysis showed no difference in the relative amounts of any of these apos in tissue homogenates of frontal lobe from AD or control patients. Comparison by APO E genotype showed no differences in the amount of apo E in brain among APO E ε3/3, ε3/4, or ε4/4 individuals; however, a significant decrease in the amount of apo J was associated with the APO E ε4 allele. No differences in apo J levels were detected in CSF samples of AD subjects. We propose that several members of the exchangeable apo family may interact with Aβ deposits in senile plaques through common amphipathic α-helical domains. Competition among these molecules for binding of Aβ or Aβ aggregates may influence the deposition of Aβ in senile plaques.  相似文献   

18.
Amyloid-β (Aβ) is thought to promote neuronal cell loss in Alzheimer's disease, in part through the generation of reactive oxygen species (ROS) and subsequent activation of mitogen-activated protein kinase (MAPK) pathways. Protein phosphatase 5 (PP5) is a ubiquitously expressed serine/threonine phosphatase which has been implicated in several cell stress response pathways and shown to inactivate MAPK pathways through key dephosphorylation events. Therefore, we examined whether PP5 protects dissociated embryonic rat cortical neurons in vitro from cell death evoked by Aβ. As predicted, neurons in which PP5 expression was decreased by small-interfering RNA treatment were more susceptible to Aβ toxicity. In contrast, over-expression of PP5, but not the inactive mutant, PP5(H304Q), prevented MAPK phosphorylation and neurotoxicity induced by Aβ. PP5 also prevented cell death caused by direct treatment with H2O2, but did not prevent Aβ-induced production of ROS. Thus, the neuroprotective effect of PP5 requires its phosphatase activity and lies downstream of Aβ-induced generation of ROS. In summary, our data indicate that PP5 plays a pivotal neuroprotective role against cell death induced by Aβ and oxidative stress. Consequently, PP5 might be an effective therapeutic target in Alzheimer's disease and other neurodegenerative disorders in which oxidative stress is implicated.  相似文献   

19.
Abstract: Zinc added to buffered solutions of synthetic β-amyloid peptide (Aβ) has been reported to induce accelerated formation of insoluble aggregates. This observation suggests that zinc may play a role in the formation of senile plaques, which contain Aβ, in Alzheimer's disease. To test this hypothesis under conditions more representative of the brain, we investigated the ability of zinc to induce aggregation of Aβ in freshly drawn canine CSF, which contains the same sequence as human Aβ. Aggregates were separated from CSF by ultracentrifugation before and after incubation with zinc and assayed by quantitative western blotting and ELISA. We found that zinc induced the rapid aggregation of endogenous Aβ in CSF, with an EC50 of 120–140 µ M . The reaction was specific, because most (≥95%) CSF protein remained soluble under conditions where most Aβ was insoluble, as assayed by scanning densitometry of Coomassie-stained gels. Staining of the precipitated material resulted in the visualization of punctate regions that were thioflavin positive or birefringent when stained with Congo red, suggesting the formation of amyloid-related structures. These results suggest that zinc could play a role in amyloid deposition, because there is overlap between the regions of the brain where zinc concentrations are highest and regions with the highest amyloid content. It is surprising that zinc induced the aggregation of endogenous soluble APP at lower concentrations than required for Aβ (EC50 80 µ M ). The possibility that zinc-induced aggregation of APP may precede the deposition of Aβ into plaques is discussed. Investigation of aggregation of Aβ in CSF will aid in assessing the biological relevance of other agents that have been reported to accelerate amyloid formation.  相似文献   

20.
Abstract: β-Amyloid peptides (Aβ) are deposited in an aggregated fibrillar form in both diffuse and senile plaques in the brains of patients with Alzheimer's disease. The neurotoxicity of Aβ in cultured neurons is dependent on its aggregation state, but the factors contributing to aggregation and fibril formation are poorly understood. In the present study, we investigated whether α2-macroglobulin (α2M), a protein present in neuritic plaques and elevated in Alzheimer's disease brain, is a potential regulatory factor for Aβ fibril formation. Previous studies in our laboratory have shown that α2M is an Aβ binding protein. We now report that, in contrast to another plaque-associated protein, α1-antichymotrypsin, α2M coincubated with Aβ significantly reduces aggregation and fibril formation in vitro. Additionally, cultured fetal rat cortical neurons are less vulnerable to the toxic actions of aged Aβ following pretreatment with α2M. We postulate that α2M is able to maintain Aβ in a soluble state, preventing fibril formation and associated neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号