首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
OBJECTIVE--To investigate long term changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations and in measures of other risk factors for coronary heart disease and to assess their importance for the development of coronary heart disease in Scottish men. DESIGN--Longitudinal study entailing follow up in 1988-9 of men investigated during a study in 1976. SETTING--Edinburgh, Scotland. SUBJECTS--107 men from Edinburgh who had taken part in a comparative study of risk factors for heart disease with Swedish men in 1976 when aged 40. INTERVENTION--The men were invited to attend a follow up clinic in 1988-9 for measurement of cholesterol concentrations and other risk factor measurements. Eighty three attended and 24 refused to or could not attend. MAIN OUTCOME MEASURES--Changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations, body weight, weight to height index, prevalence of smoking, and alcohol intake; number of coronary artery disease events. RESULTS--Mean serum total cholesterol concentration increased over the 12 years mainly due to an increase in the low density lipoprotein cholesterol fraction (from 3.53 (SD 0.09) to 4.56 (0.11) mmol/l) despite a reduction in high density lipoprotein cholesterol concentration. Body weight and weight to height index increased. Fewer men smoked more than 15 cigarettes/day in 1988-9 than in 1976. Blood pressure remained stable and fasting triglyceride concentrations did not change. The frequency of corneal arcus doubled. Alcohol consumption decreased significantly. Eleven men developed clinical coronary heart disease. High low density lipoprotein and low high density lipoprotein cholesterol concentrations in 1976, but not total cholesterol concentration, significantly predicted coronary heart disease (p = 0.05). Almost all of the men who developed coronary heart disease were smokers (91% v 53%, p less than 0.05). CONCLUSION--Over 12 years the lipid profile deteriorated significantly in this healthy cohort of young men. Smoking, a low high density lipoprotein concentration and a raised low density lipoprotein concentration were all associated with coronary heart disease in middle aged Scottish men, whereas there was no association for total cholesterol concentration. The findings have implications for screening programmes.  相似文献   

3.
4.
PURPOSE OF REVIEW: Several lines of evidence suggest that postprandial lipemia increases the risk of atherogenesis, and in each of the systems involved in postprandial metabolism the roles of many genes have been explored in order to establish the possible implications of their variability in coronary heart disease risk. RECENT FINDINGS: This report focuses on recent results pertaining to postprandial lipoprotein metabolism and genes, their variability and their relationship with intermediate phenotypes and coronary heart disease. The postprandial lipid response was modified by polymorphisms within the genes for apolipoprotein AI, apolipoprotein E, apolipoprotein B, apolipoprotein CI, apolipoprotein CIII, apolipoprotein AIV, apolipoprotein AV, lipoprotein lipase, hepatic lipase, fatty acid-binding protein-2, the fatty acid transport proteins, microsomal triglyceride transfer protein and scavenger receptor class B type I. We also discuss recent advances in the effects of gene regulation using knockdown animal models on postprandial lipoprotein metabolism. SUMMARY: The review discusses several of these factors as well as the potential impact of gene polymorphism on the variability of postprandial lipoprotein metabolism as intermediate phenotypes for coronary heart disease. The variability in postprandial lipid response is highly complex. Future studies will need to be large if they are to assess the effects of multiple polymorphisms.  相似文献   

5.
The atherogenicity of triglyceride-rich lipoprotein has been revealed. This study was performed to explore the clinical importance of triglyceride-rich lipoprotein by measuring its cholesterol content and comparing it with other lipoprotein fractions. Blood samples were obtained from 103 patients whose fasting plasma triglyceride concentration exceeded 300 mg/dl. The cholesterol monitor using the technique of high-performance liquid chromatography was used for the measurement of their plasma cholesterol concentrations and the determination of cholesterol distribution among lipoprotein fractions. This monitor showed 4 peaks: large-triglyceride-rich lipoprotein, small-triglyceride-rich lipoprotein, low-density lipoprotein, and high-density lipoprotein. Total cholesterol increased with increasing triglyceride. The increment of total cholesterol was nearly equal to that of small-triglyceride-rich lipoprotein cholesterol. Small-triglyceride-rich lipoprotein cholesterol exceeded low-density lipoprotein cholesterol where plasma triglyceride concentration was over 500 mg/dl. In conclusion, triglyceride-rich lipoprotein may be clinically important for hypertriglyceridemic patients as a source of cholesteryl ester in arteriosclerotic plaques, and increased triglyceride-rich lipoprotein cholesterol may be used as a basis for hypertriglyceridemia atherogenicity. Our study suggests that hypertriglyceridemia should be treated to prevent arteriosclerotic disease.  相似文献   

6.
The ability of cells to utilize cholesterol derived from lipoprotein is important in plasma membrane biosynthesis, steroidogenesis and the regulation of sterol synthesis. While the endocytosis of lipoprotein-derived cholesterol has been well characterized, the subsequent events that mediate its post-lysosomal intracellular transport are not understood. Recent studies have suggested that vimentin-type intermediate filaments may have a role in cholesterol transport. The mechanism by which vimentin filaments affect this process is not known, but future studies promise to provide new insights into both the post-lysosomal transport of cholesterol and the intracellular functions of intermediate filaments.  相似文献   

7.
Despite significant progress in the management of atherosclerosis and its resultant complications, cardiovascular disease remains the principal cause of death in the world. The National Cholesterol Education Project Adult Treatment Panel III (NCEP ATP III) recognizes low levels of high-density lipoprotein cholesterol (HDL) as a risk factor for coronary heart disease (CHD) and high levels of HDL as a risk-reducing factor; however, the elevation of HDL as a specific therapeutic target for the prevention and treatment of CHD has yet to be accepted on the same level as low-density lipoprotein (LDL)-reducing therapies. Current HDL elevators including nicotinic acid, fibric acid derivatives, peroxisome proliferator activated receptor (PPAR) agonists and statins also affect other lipid constituents which make interpretation of the clinical trials of these drugs difficult in teasing out the independent effect of HDL elevation. Ample laboratory investigation suggests that HDL elevation would reduce atherosclerotic burden through multiple independent mechanisms. In this review, we explore HDL biology, its potential mechanisms in the treatment of atherosclerotic disease, and promising new drugs with HDL-raising activity.  相似文献   

8.
OBJECTIVE--To assess the roles of serum concentrations of total cholesterol, high density lipoprotein cholesterol, and triglycerides in predicting major ischaemic heart disease. DESIGN--Men recruited for the British regional heart study followed up for a mean of 7.5 years. SETTING--General practices in 24 British towns. PATIENTS--7735 Middle aged men. END POINT--Predictive value of serum concentrations of lipids. MEASUREMENTS AND MAIN RESULTS--At initial screening serum concentrations of total cholesterol, high density lipoprotein cholesterol, and triglycerides were determined from non-fasting blood samples. Altogether 443 major ischaemic heart disease events (fatal and non-fatal) occurred during the study. Men in the highest fifth of the distribution of total cholesterol concentration (greater than or equal to 7.2 mmol/l) had 3.5 times the risk of ischaemic heart disease than did men in the lowest fifth (less than 5.5 mmol/l) after adjustment for high density lipoprotein cholesterol concentration and other risk factors. Men in the lowest fifth of high density lipoprotein cholesterol concentration (less than 0.93 mmol/l) had 2.0 times the risk of men in the highest fifth (greater than or equal to 1.33 mmol/l) after adjustment for total cholesterol concentration and other risk factors. Men in the highest fifth of triglyceride concentration (greater than or equal to 2.8 mmol/l) had only 1.3 times the risk of those in the lowest fifth (less than 1.08 mmol/l) after adjustment for total cholesterol concentration and other risk factors; additional adjustment for high density lipoprotein cholesterol concentration made the association with ischaemic heart disease disappear. CONCLUSIONS--Serum concentration of total cholesterol is the most important single blood lipid risk factor for ischaemic heart disease in men. High density lipoprotein cholesterol concentration is less important, and triglyceride concentrations do not have predictive importance once other risk factors have been taken into account.  相似文献   

9.
Niacin and cholesterol: role in cardiovascular disease (review)   总被引:5,自引:0,他引:5  
Niacin has been widely used as a pharmacologic agent to regulate abnormalities in plasma lipid and lipoprotein metabolism and in the treatment of atherosclerotic cardiovascular disease. Although the use of niacin in the treatment of dyslipidemia has been reported as early as 1955, only recent studies have yielded an understanding about the cellular and molecular mechanism of action of niacin on lipid and lipoprotein metabolism. In brief, the beneficial effect of niacin to reduce triglycerides and apolipoprotein-B containing lipoproteins (e.g., VLDL and LDL) are mainly through: a) decreasing fatty acid mobilization from adipose tissue triglyceride stores, and b) inhibiting hepatocyte diacylglycerol acyltransferase and triglyceride synthesis leading to increased intracellular apo B degradation and subsequent decreased secretion of VLDL and LDL particles. The mechanism of action of niacin to raise HDL is by decreasing the fractional catabolic rate of HDL-apo AI without affecting the synthetic rates. Additionally, niacin selectively increases the plasma levels of Lp-AI (HDL subfraction without apo AII), a cardioprotective subfraction of HDL in patients with low HDL. Using human hepatocytes (Hep G2 cells) as an in vitro model system, recent studies indicate that niacin selectively inhibits the uptake/removal of HDL-apo AI (but not HDL-cholesterol ester) by hepatocytes, thereby increasing the capacity of retained HDL-apo AI to augment cholesterol efflux through reverse cholesterol transport pathway. The studies discussed in this review provide evidence to extend the role of niacin as a lipid-lowering drug beyond its role as a vitamin.  相似文献   

10.
Coronary vascular disease (CVD) is a chronic, multifactorial disease that occurs often in individuals without known risk factors. We investigated the predictive value of homocysteine (Hcy) in relation to C-reactive protein (CRP) and low-density lipoprotein (LDL)-cholesterol in patients with confirmed coronary disease. The study included 87 German and 92 Syrian patients in addition to 87 German and 64 Syrian control individuals. Patients and controls were of comparable age, lifestyles and cultural background. Patients of both ethnic groups had significantly higher concentrations of Hcy and C-reactive protein compared to the controls. The lipids were higher only in Syrian patients compared to the controls. Elevated concentrations of Hcy or that of CRP (>75th percentiles) were associated with increased probability for CVD. In both population groups, the risk increased markedly in subjects who had elevated concentrations of Hcy and CRP or those who had elevated concentrations of Hcy and LDL-cholesterol. The results emphasize that detemination of Hcy may improve the predictive value of C-reactive protein and the LDL-cholesterol. Measurements of these markers are especially important for identification of patients at high risk for CVD.  相似文献   

11.
The current report is a quantitative review of the relationship between lipoprotein lipase gene variants and cardiovascular disease based on published population-based studies. Sixteen studies, representing 17,630 individuals, report allelic distribution for lipoprotein lipase gene variants among patients and control individuals. Patient outcomes included clinical cardiovascular disease events, documented coronary disease based on angiography, or intimal media thickening by B-mode ultrasonography. Mantel-Haenszel stratified analysis was used to compute a summary odds ratio and 95% confidence intervals for the association between rare allele in the lipoprotein lipase gene and disease status. Because of potential differing effects associated with different lipoprotein lipase variants, each lipoprotein lipase mutant allele was considered separately. The lipoprotein lipase D9N/-93G to T allele has a summary odds ratio of 2.03 (95% confidence interval 1.30-3.18), indicating a twofold increase in risk of coronary disease for carriers with this allelic variant. The summary odds ratio for the relationship of the rare lipoprotein lipase G188E variant with cardiovascular disease is 5.25 (95% confidence interval 1.54-24.29). The lipoprotein lipase N291S allele is associated with a marginal increase in cardiovascular disease (summary odds ratio 1.25, 95% confidence interval 0.99-1.60, P = 0.07). However, there is stronger evidence for a positive association in certain populations. The summary odds ratio for lipoprotein lipase S447X allele is 0.81 (95% confidence interval 0.65-1.0), which indicates a cardioprotective effect of this lipoprotein lipase gene variant. Thus, lipoprotein lipase gene variants are associated with differential susceptibility to cardiovascular disease.  相似文献   

12.
PURPOSE OF REVIEW: The aim of this article is to review, analyze and interpret the growing body of evidence on circulating oxidized low-density lipoprotein and its relationship to diagnosis and prognosis of cardiovascular disease. RECENT FINDINGS: Previous studies focused on indirect measures of oxidative stress such as susceptibility of low-density lipoprotein to oxidation and measurement of autoantibodies to oxidized low-density lipoprotein. The generation of monoclonal antibodies recognizing distinct oxidation-specific epitopes has allowed the development of sensitive and specific assays to measure circulating oxidized low-density lipoprotein. Recent work in human populations has demonstrated that circulating oxidized low-density lipoprotein is associated with preclinical atherosclerosis, coronary and peripheral arterial atherosclerosis, acute coronary syndromes and vulnerable plaques. Several studies have also suggested that elevated levels of oxidized low-density lipoprotein are a prognostic indicator of cardiovascular outcomes. In addition, it has been shown that lipoprotein(a) is the primary carrier of oxidized phospholipids in the circulation of humans, suggesting additional mechanisms through which lipoprotein(a) may be pro-atherogenic. SUMMARY: Research on circulating oxidized low-density lipoprotein biomarkers is rapidly accelerating and providing novel insights into the pathophysiology of cardiovascular disease. Future studies will further assess the clinical utility of oxidized low-density lipoprotein biomarkers by determining their prognostic value in the diagnosis and prognosis of cardiovascular disease and will also evaluate the relative merit of specific assays by performing comparative studies.  相似文献   

13.
High-density lipoprotein cholesterol (HDL-c) plays a crucial role in the concept of reverse cholesterol transport and has many other beneficial properties which may interfere with atherogenesis and plaque rupture. Low HDL-c levels are currently considered to be an important risk factor for the development of cardiovascular disease. However until recently no effective and safe treatment for powerfully increasing HDL-c selectively was available. This short overview describes possible new therapeutic approaches that may be able to raise HDL-c levels or improve HDL-c metabolism/reverse cholesterol transport. Today, the most important targets to be evaluated are inhibition of cholesteryl ester transfer protein (CETP) and increasing the HDL-c level by infusion of engineered HDL particles. Trials to prove clinical benefit of new HDL-c raising approaches are underway and may well be a new starting point for an optimised prevention and treatment of atherosclerotic cardiovascular disease.  相似文献   

14.
Previous studies indicate that free cholesterol moves passively between high density lipoprotein (HDL) and cell plasma membranes by uncatalyzed diffusion of cholesterol molecules in the extracellular aqueous phase. By this mechanism, the rate constants for free cholesterol influx (Cli) and efflux (ke) should not be very sensitive to the free cholesterol content of cells or HDL. Thus, at a given HDL concentration, the unidirectional influx and efflux of cholesterol mass (Fi, Fe) should be proportional to the cholesterol content of HDL and cells, respectively, and net efflux of cholesterol mass (Fe-Fi greater than 0) should occur when either cells are enriched with cholesterol or HDL is depleted of cholesterol. We have examined the influence of cell and HDL free cholesterol contents on the bidirectional flux of free cholesterol between HDL and human fibroblasts and also attempted to detect some dependence of flux on the binding of HDL to the cells. In the range of HDL concentrations from 1 to 1000 micrograms of protein/ml, ke for cell free cholesterol approximately doubled for every 10-fold increase in HDL concentration, reaching 0.04 h-1 at 1000 micrograms of HDL/ml. ke and Cli were not influenced by the doubling of fibroblast free cholesterol content (from 31 +/- 5 to 62 +/- 13 micrograms of cholesterol/mg of protein). There was an approximate exchange of cholesterol between HDL and the unenriched fibroblasts (e.g. at [HDL] = 100 micrograms/ml, Fe and Fi = 3.2 and 3.0 micrograms of cholesterol/[4 h.mg of cell protein], respectively). In contrast, there was substantial net efflux from the enriched cells (at [HDL] = 100 micrograms/ml, Fe and Fi = 5.5 and 3.1 micrograms of cholesterol/[4 h.mg of cell protein], respectively). The rate constants for cholesterol flux were not influenced by changing the free cholesterol content of HDL, so that there was net efflux of cell cholesterol in the presence of cholesterol-depleted HDL and net influx from cholesterol-rich HDL. The Kd of HDL binding to fibroblasts was reduced from 1.7 to 0.9 micrograms/ml by the enrichment of the cells with free cholesterol; this increase in affinity for HDL was not reflected in enhanced rate constants for cholesterol flux. The inhibition of specific HDL binding by treatment of the lipoprotein with dimethyl suberimidate did not affect cholesterol flux using either control or cholesterol-rich cells at any HDL concentration in the range 1-1000 micrograms/ml. The above results are consistent with the concept that net movement of free cholesterol between cells and HDL occurs by passive, mass-action effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
PURPOSE OF REVIEW: This review discusses whether the relationship of small dense low-density lipoprotein to cardiovascular risk is direct, due to the atherogenic properties of the particle, or a reflection of concomitant abnormalities in high-density lipoprotein and plasma triglyceride. RECENT FINDINGS: Recent studies have examined whether low-density lipoprotein size distribution or concentration of small low-density lipoprotein is related more strongly to risk. It appears that the latter is a better predictor in major surveys, although in smaller cohort studies particle size shows a strong association with atherosclerosis burden. While the main causes of the formation of small dense low-density lipoprotein are relatively well understood, novel metabolic factors may also play a role, and pharmacologic interventions such as glitazones may have a direct regulatory impact. SUMMARY: Evidence links abnormalities in low-density lipoprotein structure to cardiovascular risk. The plasma concentration of small dense low-density lipoprotein is likely to be more informative than relative low-density lipoprotein particle size, and although methods are available for quantitation of this subfraction, there is considerable room for improvement. It is not yet clear how knowledge of the small dense low-density lipoprotein concentration may add to risk prediction.  相似文献   

17.
The aim of our study was to compare apolipoprotein B (apoB), non-high density lipoprotein cholesterol (nonHDL-C), low density lipoprotein cholesterol (LDL-C), and other lipid markers as predictors of coronary heart disease (CHD) in Chinese. Overall, 122 individuals developed CHD during a median 13.6 years of follow-up in 3,568 adult participants from a community-based cohort. The multivariate relative risk of CHD in the highest quintile compared with the lowest quintile was 2.74 [95% confidence interval (CI), 1.45-5.19] for apoB, 1.98 (95% CI, 1.00-3.92) for nonHDL-C, and 1.86 (95% CI, 1.00-3.49) for LDL-C (all tests for trend, P < 0.05). ApoB also had the highest receiver operator characteristic curve area (0.63; 95% CI, 0.58-0.68) in predicting CHD. When apoB and nonHDL-C were mutually adjusted, only apoB was predictive; the relative risk was 2.80 (95% CI, 1.31-5.96; P = 0.001) compared with 1.09 (95% CI, 0.49-2.40; P = 0.75) for nonHDL-C. Compared with the lowest risk, participants with the highest apoB and total cholesterol/HDL-C had a 3-fold increased risk of developing CHD (relative risk = 3.21; 95% CI, 1.45-7.14). These data provide strong evidence that apoB concentration was a better predictor of CHD than other lipid markers in Chinese.  相似文献   

18.
19.
20.
The intracellular accumulation of unesterified cholesterol was examined during 24 h of low density lipoprotein (LDL) uptake in normal and Niemann-Pick C fibroblasts by fluorescence microscopy with filipin staining and immunocytochemistry. Perinuclear fluorescence derived from filipin-sterol complexes was observed in both normal and mutant cells by 2 h. This perinuclear cholesterol staining reached its peak in normal cells at 6 h. Subsequent development of fluorescence during the remaining 18 h of LDL incubation was primarily limited to the plasma membrane region of normal cells. In contrast, mutant cells developed a much more intense perinuclear fluorescence throughout the entire 24 h of LDL uptake with little enhancement of cholesterol fluorescence staining in the plasma membranes. Direct mass measurements confirmed that internalized LDL cholesterol more readily replenishes the plasma membrane cholesterol of normal than of mutant fibroblasts. Perinuclear filipin-cholesterol fluorescence of both normal and mutant cells was colocalized with lysosomes by indirect immunocytochemical staining of lysosomal membrane protein. Abnormal sequestration of LDL cholesterol in mutant cells within a metabolically latent pool is supported by the finding that in vitro esterification of cellular cholesterol could be stimulated in mutant but not in normal cell homogenates by extensive disruption of the intracellular membranous structures of cells previously cultured with LDL. Deficient translocation of exogenously derived cholesterol from lysosomes to other intracellular membrane sites may be responsible for the delayed homeostatic responses associated with LDL uptake by mutant Niemann-Pick Type C fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号