首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. An attempt was made to find out the causes of the discrepancy between the ESR spectra of membrane acetylcholinesterase (EC 3.1.1.7) obtained by Morrisett and co-workers and those obtained by the present authors. 2. In order to see whether the discrepancy was due to the different spin-labeling procedures, the same membrane acetylcholinesterase preparations were spin-labeled with the same compound, using the two different spin-labeling procedures. The enzyme activity was determined with pH-static titration and the ESR spectra recorded. 3. It was found that after spin-labeling according to Morrisett and co-workers, there were from 10-100 times more spin-label molecules bound to the enzyme preparations than there were active serines in them. 4. Using the method of Morrisett and co-workers, the majority of spin-label molecules was found to be bound to sites outside the active serines whereas the spin-labeling procedures of the present authors proved to be selective for active serines; the discrepancy in ESR spectra is explained.  相似文献   

2.
The interaction of human alpha 1-acid glycoprotein (AAG) with a corticosteroid was studied using nitroxide labeled deoxycorticosterone and electron spin resonance (ESR) spectroscopy. The ESR spectra of the spin labeled steroid in the presence of AAG could be used to characterize the ligand-protein interaction at equilibrium without the need of a separation between bound and free species. An association constant Ka of 6.10(5) M-1 at 20 degrees C and a binding capacity of one site per mole protein were found. ESR spectra recorded at equilibrium at various temperatures allowed the calculation of enthalpy and entropy variations for the steroid-protein interaction; these thermodynamic parameters exhibited a rapid change above 45 degrees C which may be related to a protein conformational modification above this temperature, as detected by circular dichroism study. The ESR spectra width could be used to define a polar character for the spin label environment in the steroid binding site of AAG and to calculate an apparent rotational correlation time of 2.8 x 10(-8) sec for the steroid-protein complex in aqueous solution at 20 degrees C. It can be concluded that spin labeling and ESR methodology is of value in the study of steroid-protein interactions of biological significance above all because it can provide direct physico-chemical information concerning the local environment of the ligand in its binding site at equilibrium.  相似文献   

3.
In order to overcome a common problem in spin trapping with high concentrations of 5.5-dimethyl-I-pyrroline-N-oxide (DMPO) where ESR spectra are obtained which include an unidentified set of lines composed of a triplet of doublets. commercial DMPO was analyzed for its impurities by high-performance liquid chromatography. mass spectrometry. and nuclear magnetic resonance spectroscopy. It has been determined that this undesirable ESR spectrum IS due to an impurity included in the spin trap. This compound has been assigned to the hydronylunine which is a DMPO-derivative having an epoxy ring located at the 2 and 3 positions.  相似文献   

4.
The side chain of the serine residue in the active center of atropinesterase (AtrE), alpha-chymotrypsin (Chymo), and subtilisin A (Sub) was labeled with two paramagnetic reporter groups of different size (label I or II, respectively) by sulfonylation with N-[3-(fluorosulfonyl)phenyl]-1-oxy-2,2,5,5-tetramethyl-pyrroline-3 -carboxamide or N-[6-(fluorosulfonyl)-2-naphthyl]-1-oxy-2,2,5,5-tetramethylpyrroline+ ++-3 -carboxamide. ESR spectra of labeled enzymes in 10 mM phosphate buffer, pH 7.4, were measured at temperatures between 133 and 298 K by using a home-built spectrometer operating in the absorption mode at 10-kHz field modulation. The spectra, in particular those at 276-298 K, were analyzed by computer simulation of the overall line shape according to the methods developed by Freed and co-workers, based on eigenfunction expansion. In the case of AtrE for both labels, the best agreement between experimental and simulated solution spectra was obtained with only one mobility component showing anisotropic, axially symmetric reorientation according to the Egelstaff jump-diffusion model. The axis of preferential reorientation was found to lie in the XZ plane at a polar angle of about 30 degrees with the X axis. The corresponding rotational correlation time (tau parallel) did not show appreciable viscosity/temperature (eta/T) dependence but had a constant value of 4.4 and 2.2 ns for labels I and II, respectively. The rotational correlation time associated with rotation around the axes perpendicular to that of preferential reorientation (tau perpendicular) showed the usual eta/T dependence and had a value of 22.0 ns at 276 K for both labels. The above results strongly suggest that in AtrE both nonpolar reporter groups reside in a pocket near the active serine. Contrary to the situation in AtrE, the overall mobility of the -N-O. fragments in Chymo and Sub was found to result from contributions of at least two distinct motional states, strongly and weakly immobilized. In going from label I to label II, the relative contribution of the latter state increases at the expense of that of the former. This is ascribed to an equilibrium between a relatively free state of the aromatic cores and a firmly bound position in the specificity pocket of these proteases. The apparently more rigid embedding of the spin-labels in the enzyme structure of AtrE suggests that the size of the nonpolar binding pocket in the active center region of this esterase allows a deeper penetration of the aromatic portions of the labels than is possible for the specificity pocket of Chymo or Sub.  相似文献   

5.
The topography of the active sites of native horseradish peroxidase and manganic horseradish peroxidase has been studied with the aid of a spin-labeled analog of benzhydroxamic acid (N-(1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxy)-p-aminobenzhydroxamic acid). The optical spectra of complexes between the spin-labeled analog of benzhydroxamic acid and Fe3+ or Mn3+ horseradish peroxidase resembled the spectra of the corresponding enzyme complexes with benzhydroxamic acid. Electron spin resonance (ESR) measurement indicated that at pH 7 the nitroxide moiety of the spin-labeled analog of benzhydroxamic acid became strongly immobilized when this label bound to either ferric or manganic horseradish peroxidase. The titration of horseradish peroxidase with the spin-labeled analog of benzhydroxamic acid revealed a single binding site with association constant Ka approximately 4.7 . 10(5) M-1. Since the interaction of ligands (e.g. F-, CN-) and H2O2 with horseradish peroxidase was found to displace the spin label, it was concluded that the spin label did not indeed bind to the active site of horseradish peroxidase. At alkaline pH values, the high spin iron of native horseradish peroxidase is converted to the low spin form and the binding of the spin-labeled analog of benzhydroxamic acid to horseradish peroxidase is completely inhibited. From the changes in the concentration of both bound and free spin label with pH, the pK value of the acid-alkali transition of horseradish peroxidase was found to be 10.5. The 2Tm value of the bound spin label varied inversely with temperature, reaching a value of 68.25 G at 0 degree C and 46.5 G at 52 degrees C. The dipolar interaction between the iron atom and the free radical accounted for a 12% decrease in the ESR signal intensity of the spin label bound to horseradish peroxidase. From this finding, the minimum distance between the iron atom and nitroxide group and hence a lower limit to the depth of the heme pocket of horseradish peroxidase was estimated to be 22 A.  相似文献   

6.
Páli T  Finbow ME  Marsh D 《Biochemistry》1999,38(43):14311-14319
The 16-kDa proteolipid from the hepatopancreas of Nephrops norvegicus belongs to the class of channel proteins that includes the proton-translocation subunit of the vacuolar ATPases. The membranous 16-kDa protein from Nephrops was covalently spin-labeled on the unique cysteine Cys54, with a nitroxyl maleimide, or on the functionally essential glutamate Glu140, with a nitroxyl analogue of dicyclohexylcarbodiimide (DCCD). The intensities of the saturation transfer ESR spectra are a sensitive indicator of spin-spin interactions that were used to probe the intramembranous structure and assembly of the spin-labeled 16-kDa protein. Spin-lattice relaxation enhancements by aqueous Ni(2+) ions revealed that the spin label on Glu140 is located deeper within the membrane (around C9-C10 of the lipid chains) than is that on Cys54 (located around C5-C6). In double labeling experiments, alleviation of saturation by spin-spin interactions with spin-labeled lipids indicates that spin labels both on Cys54 and on Glu140 are at least partially exposed to the lipid chains. The decrease in saturation transfer ESR intensity observed with increasing spin-labeling level is evidence of oligomeric assembly of the 16-kDa monomers and is consistent with a protein hexamer. These results determine the locations and orientations of transmembrane segments 2 and 4 of the 16-kDa putative 4-helix bundle and put constraints on molecular models for the hexameric assembly in the membrane. In particular, the crucial DCCD-binding site that is essential for proton translocation appears to contact lipid.  相似文献   

7.
M Kuwabara  W Hiraoka  F Sato 《Biochemistry》1989,28(25):9625-9632
A method combining spin trapping, ESR, and HPLC was employed to obtain evidence for the formation of sugar radicals in OH-attacked TMP with special emphasis on the detection of strand-break precursors of DNA. OH radicals were produced by irradiating an N2O-saturated aqueous solution with X-rays. When an N2O-saturated aqueous solution containing TMP and a spin trapping reagent, MNP, was irradiated with X-rays, it was estimated on the basis of theoretical calculations using rate constants that 94% of the TMP radicals were induced by OH radicals. Since several spin adducts between TMP radicals and MNP, as well as the byproducts of the spin trapping reagent itself, were produced, reverse-phase HPLC was used to separate them. The presence of six spin adducts was confirmed by ESR examination. Further examination of these spin adducts by UV absorbance spectrophotometry showed the presence of a chromophore at 260 nm in three adducts. Since a gradual increase in the release of unaltered base from these adducts was observed when they were allowed to stand for 0-22 h at room temperature, they could be regarded as the spin adducts of sugar radicals and MNP. ESR spectra from the spin adducts were consistent with hydrogen abstraction radicals at the C1', C4', and C5' positions of the sugar moiety. These radicals appeared to be precursors of AP sites and strand breaks. In addition to these spin adducts, ESR spectra that were consistent with the spin adducts of base radicals (the C5 and C6 radicals) and MNP were observed.  相似文献   

8.
I I Vlasova  S P Kuprin 《Biofizika》1992,37(5):910-919
A single SH-group of phosphoglycerate kinase from yeast was modified by mercury-containing spin label. The saturation curves of ESR spectra of the spin-labeled enzyme were studied. The paramagnetic ions of Mn2+ bound to the centre of ion nonspecific binding or active centre in the complex with ATP can influence the saturation of the spin-labeled enzyme. The saturation curves of the ESR signal of the spin-labeled enzyme in the presence of paramagnetic complex of CrATP were studied. It has been demonstrated that the second nonspecific centre of ATP binding is located at the active site of the enzyme (3-phosphoglycerate binding centre).  相似文献   

9.
Electron spin resonance (ESR) spectra of stearic acid spin labels incorporated into spinach thylakoids can be used to monitor membrane changes during freezing. Changes in the ESR parameters can be directly correlated to the extent of functional freeze damage. Freeze-induced changes in the ESR parameters strongly depend on the osmotic conditions of the incubation medium. Similar changes as on freezing can be observed by transferring thylakoids from an isotonic to a hypotonic medium, i.e., by swelling osmotically flattened thylakoids. This and computer simulations of spin label ESR spectra, which allow for variation of vesicle shape, lead to the conclusion that freeze-induced ESR spectral changes are due to swelling of the thylakoids. Indeed, van't Hoff plots of thylakoid packed volume indicate a freeze-induced increase in the apparent number of osmotically active molecules within the intrathylakoid lumen. During freezing, salt and/or sugar leak into the lumen. Simultaneously, proton channels are irreversibly opened. As the structural alterations obtained upon freezing are not accompanied by a change in bulk fluidity, these data are interpreted in terms of a local action of cryotoxic agents on critical microstructures, possibly at the rims of the thylakoid membranes.  相似文献   

10.
Summary The effect of the cholinergic activator, phenyltrimethylammonium, on the ESR spectra of spinlabeled membrane bound acetylcholinesterase was studied; a reduction of maximal hyperfine splitting of the anisotropic ESR spectrum by 2 G was observed. The influence of phenyltrimethylammonium was prevented by the two cholinergic blocking agents d-tubocurarine and-cobratoxine. The present results indicate that the conformation change of the esteratic site of membrane acetylcholinesterase is triggered by the binding of phenyltrimethylammonium to the cholinoreceptor site.entjurcet al.: An ESR study of the postsynaptic membrane Acetylcholinesterase of torpedo marmorata electric organ.  相似文献   

11.
The electron spin resonance (ESR) spectrum of a nitroxide spin probe intercalated in a membrane is influenced by the amplitude of anisotropic motion of the nitroxide group and by the geometry of the oxazolidine ring of the nitroxide. In the analysis of the ESR spectra of nitroxide-labelled fatty acid probes, it is generally assumed that the five-membered oxazolidine ring system is oriented rigidly perpendicular to the long molecular axis of the probe. This assumption is tested in the present study, using 2H-NMR of specifically deuterium-labelled nitroxide spin probes. Evidence is presented that the nitroxide does not display the assumed geometry in membranes. The departure from this geometry depends on the position of the nitroxide label on the acyl chain, with a more pronounced departure for position 5 relative to position 12. These and previous data provide an explanation for the discrepancies between spin-probe ESR and 2H-NMR order parameters in membranes.  相似文献   

12.
The effect of cholesterol on the membrane fluidity of human erythrocytes has been studied by electron spin resonance (ESR) spectroscopy, sensing the motion of androstane and fatty acid spin labeles in the cell membrane and in vesicles made from extracted phospholipids. 1. Androstane spin label (ASL) was incorporated from ASL-containing phospholipid vesicles into the erythrocyte membrane, essentially by a partition mechanism in proportion to their phospholipid contents. 2. On increasing the cholesterol or ASl content in the cell membrane, the spin label was gradually immobilized. 3. ASL motion in the cell membrane seemed to be primarily determined by the cholesterol/phospholipid molar ratio, regardless of the membrane protein-lipid interaction, as judged from the temperature effects on the ESR spectra of both membranes. 4. However, glutaraldehyde pretreatment induced considerable changes of the cholesterol-lipid interaction in the cell membrane, i.e., strong immobilization and cluster formation of ASL were observed.  相似文献   

13.
A spin label study of immobilized enzyme spectral subpopulations   总被引:1,自引:0,他引:1  
Electron spin resonance (ESR) spin label studies have been carried out to examine the active site conformation of alpha-chymotrypsin before and after immobilization on two types of organic polymer supports: Amberlite XAD-8 and XAD-2. alpha-Chymotryspin was first chemically modified by reaction with methyl-4-phenylbutyrimidate and then inhibited by the active site spin label 4-(2,2,6,6-tetramethyl-piperdine-1-oxyl)-m-flurosulfonylbenzamide. In general, the ESR spectra of the active site lable revealed no significant changes in conformation for most of the enzyme before or after derivatization. On the other hand, two spectral subpopulations (A and B) of spin-labeled enzyme were characterized on the basis of their ESR spectra after immobilization on Amberlite XAD-8. Spectral subpopulation A (distinguished by a highly restrained spectrum) appeared to retain its active site structure and conformation and represented a large majority of the labeled chymotrypsin on the beads. Its presence correlated with the high activity and stability of phenylbutyramidinated chymotryspin on the Amberlite XAD-8 beads. Spectral subpopulation B (distinguished by a very weakly constrained spectrum) appeared to reflect loosely bound or denatured enzyme which was removable upon washing with 40% (v/v) ethylene glycol. Two methods for examining solvent accessibility to the active site lable of the kinetics of ascorbate reduction suggested that both spectral subpopulations had identical accessibilities to the bulk solvent. Paramagnetic broadening of the signal by K(3)Fe(CN)(6) revealed differences in the spin-spin broadening of the A and B components but is deemed and inappropriate indicator of solvent accessibility.  相似文献   

14.
Genistein (5,7,4′-trihydroxyisoflavone) the common soy beans isoflavone has attracted scientific interest due to its antioxidant, estrogenic, antiangiogenic and aniticancer activities. The aim of the present study was to investigate the interaction of genistein with biological (erythrocyte) and model membranes (dimyristoyl- and dipalmitoylphosphatidylcholine). Using Laurdan and Prodan as fluorescent probes, we demonstrated phase behavior and membrane fluidity changes induced by genistein. ESR spectroscopy revealed alterations caused by genistein in membrane domains structure and mobility of spin probes with free radicals located at different depths of membrane. The method of ESR spectra decomposition and computer simulation of the recorded spectra were used in order to visualize domain coexistence by GHOST condensation method. Fluorescence and ESR spectroscopy experiments performed at different temperatures enabled us to observe the effect of isoflavone on phospholipid bilayers in either gel or liquid crystalline phase. It was concluded that genistein preferentially intercalated into lipid headgroup region, to some extent into polar–apolar interface and only in minimal degree into hydrophobic core of the membrane. According to our best knowledge this is the first study on modification of domain structure of membranes by genistein.  相似文献   

15.
The interaction of spin-labeled metacyn, procaine, carbolin and bivalent cations (Ca2+, Co2+, Ni2+) with butyrylcholinesterase (BChE) was studied by ESR and enzyme kinetic methods. The effect of pH, ionic strength and organic solvent was analysed. Spin-labeled metacyn binds at the anionic site of BChE active centre. This complex is stabilized both with coulombic and hydrophobic interactions, ionizing group of active centre with pK 6-7 also affects the binding. Spin-labeled procaine appeared to be enzyme competitive inhibitor (Ki = 4 X 10(-5) M) and is located, most probably, at the same site. Activating effect of Ca2+ ions on BChE was confirmed. Simultaneous application of spin labels and paramagnetic ions demonstrates that cations Co2+ and Ni2+ bind with BChE in the close vicinity of spin-labeled inhibitor site. Paramagnetic cations are located more closely to the cationic part of the inhibitor molecule than to the hydrophobic one, and can be displaced by surplus of Ca2+ ions. The experimental data testify the model of anionic centre which consists of bivalent metal ions and aminoalcyl cationic group subsites and is located in a hydrophobic pocket of the enzyme surface.  相似文献   

16.
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate during the fourth step of the de novo pyrimidine synthesis pathway. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies in that pathway for nucleotide synthesis. Moreover, as certain parasites lack salvage enzymes, relying solely on the de novo pathway, DHODH inhibition has turned out as an efficient way to block pyrimidine biosynthesis. Escherichia coli DHODH (EcDHODH) is a class 2 DHODH, found associated to cytosolic membranes through an N-terminal extension. We used electronic spin resonance (ESR) to study the interaction of EcDHODH with vesicles of 1,2-dioleoyl-sn-glycero-phosphatidylcholine/detergent. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions of phospholipid derivatives. Two-component ESR spectra are obtained for labels 5- and 10-phosphatidylcholine in presence of EcDHODH, whereas other probes show a single-component spectrum. The appearance of an additional spectral component with features related to fast-motion regime of the probe is attributed to the formation of a defect-like structure in the membrane hydrophobic region. This is probably the mechanism used by the protein to capture quinones used as electron acceptors during catalysis. The use of specific spectral simulation routines allows us to characterize the ESR spectra in terms of changes in polarity and mobility around the spin-labeled phospholipids. We believe this is the first report of direct evidences concerning the binding of class 2 DHODH to membrane systems.  相似文献   

17.
The binding orientation of the interfacially activated Thermomyces lanuginosa lipase (TLL, EC 3.1.1.3) on phospholipid vesicles was investigated using site-directed spin labeling and electron spin resonance (ESR) relaxation spectroscopy. Eleven TLL single-cysteine mutants, each with the mutation positioned at the surface of the enzyme, were selectively spin labeled with the nitroxide reagent (1-oxyl-2,2,5,5-tetramethyl-Delta(3)-pyrroline-3-methyl) methanethiosulfonate. These were studied together with small unilamellar vesicles (SUV) consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), to which TLL has previously been shown to bind in a catalytically active form [Cajal, Y., et al. (2000) Biochemistry 39, 413-423]. The orientation of TLL with respect to the lipid membrane was investigated using a water-soluble spin relaxation agent, chromium(III) oxalate (Crox), and a recently developed ESR relaxation technique [Lin, Y., et al. (1998) Science 279, 1925-1929], here modified to low microwave amplitude (<0.36 G). The exposure to Crox for the spin label at the different positions on the surface of TLL was determined in the absence and presence of vesicles. The spin label at positions Gly61-Cys and Thr267-Cys, closest to the active site nucleophile Ser146 of the positions analyzed, displayed the lowest exposure factors to the membrane-impermeable spin relaxant, indicating the proximity to the vesicle surface. As an independent technique, fluorescence spectroscopy was employed to measure fluorescence quenching of dansyl-labeled POPG vesicles as exerted by the protein-bound spin labels. The resulting Stern-Volmer quenching constants showed excellent agreement with the ESR exposure factors. An interfacial orientation of TLL is proposed on the basis of the obtained results.  相似文献   

18.
The synthesis of nitroxide spin-labeled derivatives of S-acetoacetyl-CoA, S-acetoacetylpantetheine, and S-acetoacetylcysteamine is described. These compounds are active substrates of L-3-hydroxyacyl-CoA dehydrogenase [(S)-3-hydroxyacyl-CoA:NAD+ oxidoreductase, EC 1.1.1.35] exhibiting vmax values from 20% to 70% of S-acetoacetyl-CoA itself. S-Acetoacetylpantetheine and S-acetoacetylcysteamine form binary complexes with the enzyme and exhibit ESR spectra typical for immobilized nitroxides. In the case of spin-labeled pantetheine, the radical is more mobile. When spin-labeled substrates are bound simultaneously to each active site of this dimeric enzyme, spin-spin interactions differentiate between two alternate orientations of the substrate [Birktoft, J.J., Holden, H.M., Hamlin, R., Xuong, N.H., & Banaszak, L.J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8262-8266]. The fatty acid moiety is thought to be located in a cleft between two domains whereas a large part of the CoA moiety probably extends into the solution. NAD+, spin-labeled at N6 of the adenine ring, is an active coenzyme of L-3-hydroxyacyl-CoA dehydrogenase (60% vmax). Complexes with the enzyme exhibit ESR spectra typical of highly immobilized nitroxides. Binding of coenzyme NAD+ causes conformational changes of the binary enzyme/substrate complex as revealed by changes in the ESR spectrum of spin-labeled S-acetoacetylpantetheine.  相似文献   

19.
The electron spin resonance (ESR) spectrum of a nitroxide spin probe intercalated in a membrane is influenced by the amplitude of anisotropic motion of the nitroxide group and by the geometry of the oxazolidine ring of the nitroxide. In the analysis of the ESR spectra of nitroxide-labelled fatty acid probes, it is generally assumed that the five-membered oxazolidine ring system is oriented rigidly perpendicular to the long molecular axis of the probe. This assumption is tested in the present study, using 2H-NMR of specifically deuterium-labelled nitroxide spin probes. Evidence is presented that the nitroxide does not display the assumed geometry in membranes. The departure from this geometry depends on the position of the nitroxide label on the acyl chain, with a more pronounced departure for position 5 relative to position 12. These and previous data provide an explanation for the discrepancies between spin-probe ESR and 2H-NMR order parameters in membranes.  相似文献   

20.
M Basset  E M Chambaz  G Defaye  B Metz 《Biochimie》1978,60(8):715-724
Interaction of a spin labeled corticosteroid (desoxycorticosterone nitroxyde: DOC -NO) with three purified proteins (albumin, transcortin, progesterone binding protein: PBG) was studied by electron spin resonance (ESR) spectroscopy. DOC-NO was competitive with natural corticosteroids and therefore bound at the same site to specific binding proteins. ESR spectra in the presence of each of the proteins showed an immobilized (bound) form of the spin labeled steroid and allowed the calculation of the corresponding association constant (Ka) at equilibrium. The three binding proteins could be characterized by the ESR parameters of the DOC-NO bound form. The thermodynamic parameters (deltaH, deltaS) of the steroid-protein interactions were calculated from the ESR data obtained within a wide temperature range (3--40 degrees C). The ESR spectra width (2T) was used to evaluate the polarity of the spin label environment within the steroid binding site: a hydrophobic character was observed for transcortin whereas PBG exhibited a more hydrophilic steroid binding sits. The rotational correlation time of the three protein DOC-NO complexes at equilibrium were calculated from ESR data; the results were correlated with the protein molecular size and suggested a non spherical shape for the binding macromolecule in solution. Spin labelling of biologically active steroids thus provides a novel approach for the study of the interaction of these hormones with their binding protein. Providing a suitable spin label, the ESR parameters may allow the characterization of several types of binding sites of different biological significance for the same hormone, in biological fluids as well as in target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号