首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amyloidoses are a group of disorders characterized by aberrant protein folding and assembly, leading to the deposition of insoluble protein fibrils (amyloid), which provokes cell dysfunction and later cell death. One of the physiologically relevant environmental factors able to affect the conformation and hence the aggregation properties of amyloidogenic proteins/peptides is metal ions. Zn(II) promotes aggregation of most amyloidogenic peptides/proteins in vitro, including amyloid β protein (Aβ), but the underlying mechanism is not known. To better understand this mechanism the present study focused on the partially α-helical conformer, supposed to be an intermediate in Aβ aggregation. This partially α-helical conformer is stabilized by 10–20% 2,2,2-trifluoroethanol (TFE): therefore, the influence of Zn binding on the aggregation of the amylidogenic model peptide Aβ(1–28) (Aβ28) was investigated at different TFE concentrations. The results showed a synergistic effect of Zn(II) and 10% TFE, i.e., that either Zn or 10% TFE accelerated Aβ28 aggregation on its own, but with them together an at least 10 times promotion of Aβ28 aggregation was observed. Further studies by thioflavin T fluorescence spectroscopy, transmission electron microscopy, and circular dichroism (CD) spectroscopy suggested that the aggregates of Zn-Aβ28 formed in 10%TFE contain a β-sheet secondary structure and are more of the amyloid type. CD spectroscopy indicated that Zn binding disrupted partially the α-helical structure of Aβ28 in TFE. Thus, we propose that the promotion of Aβ28 aggregation by Zn is based on the transformation of the partially α-helical conformer (intermediate) towards the β-sheet amyloid structure by a destabilization of the α-helix in the intermediate. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Peter FallerEmail: Email:
  相似文献   

2.
The protein components of the reaction center (RC) and core light-harvesting (LH 1) complexes of photosynthetic bacteria have evolved to specifically, but non-covalently, bind bacteriochlorophyll (Bchl). The contribution to binding of specific structural elements in the protein and Bchl may be determined for the LH 1 complex because its subunit can be studied by reconstitution under equilibrium conditions. Important to the determination and utilization of such information is the characterization of the interacting molecular species. To aid in this characterization, a fluorescent probe molecule has been covalently attached to each of the LH 1 polypeptides. The fluorescent probes were selected for optimal absorption and emission properties in order to facilitate their unique excitation and to enable the detection of energy transfer to Bchl. Oregon Green 488 carboxylic acid and 7-diethylaminocoumarin-3-carboxylic acid seemed to fulfill these requirements. Each of these probes were utilized to derivatize the LH1 β-polypeptide of Rhodobacter sphaeroides. It was demonstrated that the β-polypeptides did not interact with each other in the absence of Bchl. When Bchl was present, the probe-labeled β-polypeptides interacted with Bchl to form subunit-type complexes much as those formed with the native polypeptides. Energy transfer from the probe to Bchl occurred with a high efficiency. The α-polypeptide from LH 1 of Rb. sphaeroides and that from Rhodospirillum rubrum were also derivatized in the same manner. Since these polypeptides do not oligomerize in the absence of a β-polypeptide, reversible binding of a single Bchl to a single polypeptide could be measured. Dissociation constants for complex formation were estimated. The relevance of these data to earlier studies of equilibria involving subunit complexes is discussed. Also involved in the photoreceptor complex of Rb. sphaeroides and Rhodobacter capsulatus is another protein referred to as PufX. Two large segments of this protein were chemically synthesized, one reproducing the amino acid sequence of the core segment predicted for Rb. sphaeroides PufX and the other reproducing the amino acid sequence predicted for the core segment of Rb. capsulatus PufX. Each polypeptide was covalently labeled with a fluorescent probe and tested for energy transfer to Bchl. Each was found to bind Bchl with an affinity similar to the affinity of the LH 1 polypeptides for Bchl. It is suggested that PufX binds Bchl and interacts with a Bchlċα-polypeptide component of LH 1 to truncate, or interupt, the LH 1 ring adjacent to the location of the QB binding site of the RC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
A new unique lectin (galactose-specific) purified from the seeds of Dolichos lablab, designated as DLL-II is a heterodimer composed of closely related subunits α and β. These were separated by SDS-PAGE and isolated by electroelution. By ESI-MS analysis their molecular masses were found to be 30.746 kDa (α) and 28.815 kDa (β) respectively. Both subunits were glycosylated and displayed similar amino acid composition. Using advanced mass spectrometry in combination with de novo sequencing and database searches for the peptides derived by enzymatic and chemical cleavage of these subunits, the primary sequence was deduced. This revealed DLL-II to be made of two polypeptide chains of 281(α) and 263(β) amino acids respectively. The β subunit differed from the α subunit by the absence of some amino acids at the carboxy terminal end. This structural difference suggests that possibly, the β subunit is derived from the α subunit by posttranslational proteolytic modification at the COOH-terminus. Comparison of the DLL-II sequence to other leguminous seed lectins indicates a high degree of structural conservation. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
We have studied the quaternary structure of α-crystallin in the presence of increasing concentrations of amphiphilic and neutral detergents using gel filtration, light-scattering, boundary and equilibrium sedimentation. We observed a continuous reduction of the molar mass of the polymeric α-crystallin on increasing the concentration of sodium dodecyl sulphate from 0.1 mM to 5 mM, ending up with the monomeric peptides. Dodecyltrimethylammonium bromide also disrupts the oligomeric structure of α-crystallin but the interaction appears to be cooperative: in the sharp transition region (for a 1 mg/ml protein solution) from 3 to 8 mM of the detergent, only the native protein and a mixture of monomeric and dimeric peptide-DTAB complexes can be observed. Concomitant studies of the circular dichroism in the far UV revealed a substantial decrease of the β-sheet and increase of the α-helix secondary structure. The latter can be related to the presence of amphiphilic polypeptide sequences in the constituent αA and αB peptides. These studies reveal for the first time a direct relation between changes in the secondary structure of the αA and αB peptides and the formation of the oligomeric α-crystallin structure: the binding of the amphiphilic detergent reduces the β-sheet content, induces the formation of α-helix secondary structure and reduces the tendency of the peptide to form large aggregates. The different mechanisms for reducing the oligomeric size by anionic and cationic detergents with identical apolar parts stresses the importance of charge interactions. Our findings support some aspects of the micelle model of α-crystallin and can be related to its chaperone activity. Accepted: 18 October 1996  相似文献   

5.
Glucosidase II, one of the early N-glycan processing enzymes and a major player in the glycoprotein folding quality control, has been described as a soluble heterodimer composed of α and β subunits. Here we present the first characterization of a plant glucosidase II α subunit at the molecular level. Expression of the Arabidopsis α subunit restored N-glycan maturation capacity in Schizosaccharomyces pombe α− or αβ−deficient mutants, but with a lower efficiency in the last case. Inactivation of the α subunit in a temperature sensitive Arabidopsis mutant blocked N-glycan processing after a first trimming by glucosidase I and strongly affected seedling development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Cecilia D’Alessio and Thomas Paccalet have equal contributions to this work An erratum to this article can be found at  相似文献   

6.
 T-cell antigen receptor (TCR) membrane-negative T-cell mutants can be divided into two groups: 1) those which lack one of the six TCR polypeptides and 2) those which contain a mutated TCR chain. The present experiments reveal a new mechanism for the development of TCR membrane-negative T-cell variants: mutations in splicing consensus motifs causing excision or misreading of an entire exon (exon 3 of the TCRAC or TCRBC genes). C27.15 cells transcribe a TCR α chain consisting of TCRAVJCexon1Cexon2-encoded amino acids plus six new amino acids. The assembly defect seems to be that the truncated α chain does not interact with CD3 δ molecules; consequently, no TCR αβ/CD3 δεγε complexes are formed. E6.E12 cells transcribe a TCR β chain composed of TCRBVDJCexon1Cexon2-encoded amino acids plus twenty-seven new amino acids, which seem not to form a transmembrane region. The truncated β chain does associate with CD3 γε heterodimers, yet no TCR αβ/CD3 δεγε complexes are made. This may be due either to low assembly of TCR β/CD3 γε trimers or to lack of access of the mutated TCR β/CD3 γε trimers to the TCR α/CD3 δε compartment in the endoplasmic reticulum. Received: 25 September 1996 / Revised: 7 November 1996  相似文献   

7.
The gdh and gdhr genes, encoding B12-dependent glycerol dehydratase (GDH) and glycerol dehydratase reactivase (GDHR), respectively, in Klebsiella pneumoniae, were cloned and expressed in E. coli. Part of the β-subunit was lost during GDH purification when co-expressing α, β and γ subunit. This was overcome by fusing the β-subunit to α- or γ-subunit with/without the insertion of a linker peptide between the fusion moieties. The kinetic properties of the fusion enzymes were characterized and compared with wild type enzyme. The results demonstrated that the fusion protein GDHALB/C, constructed by linking the N-terminal of β-subunit to the C-terminal of α subunit through a (Gly4Ser)4 linker peptide, had the greatest catalytic activity. Similar to the wild-type enzyme, GDHALB/C underwent mechanism-based inactivation by glycerol during catalysis and could be reactivated by GDHR. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
NMR spectroscopy combined with paramagnetic relaxation agents was used to study the positioning of the 40-residue Alzheimer Amyloid β-peptide Aβ(1–40) in SDS micelles. 5-Doxyl stearic acid incorporated into the micelle or Mn2+ ions in the aqueous solvent were used to determine the position of the peptide relative to the micelle geometry. In SDS solvent, the two α-helices induced in Aβ(1–40), comprising residues 15–24, and 29–35, respectively, are surrounded by flexible unstructured regions. NMR signals from these unstructured regions are strongly attenuated in the presence of Mn2+ showing that these regions are positioned mostly outside the micelle. The central helix (residues 15–24) is significantly affected by 5-doxyl stearic acid however somewhat less for residues 16, 20, 22 and 23. This α-helix therefore resides in the SDS headgroup region with the face with residues 16, 20, 22 and 23 directed away from the hydrophobic interior of the micelle. The C-terminal helix is protected both from 5-doxyl stearic acid and Mn2+, and should be buried in the hydrophobic interior of the micelle. The SDS micelles were characterized by diffusion and 15N-relaxation measurements. Comparison of experimentally determined translational diffusion coefficients for SDS and Aβ(1–40) show that the size of SDS micelle is not significantly changed by interaction with Aβ(1–40). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
We examined the expression of human cyclooxygenase-1 (COX-1) in Drososphila melanogaster S2 (S2) cells transformed with cDNAs encoding β1,4-galactosyltransferase (GalT) and Galβ1,4-GlcNAc α2,6-sialyltransferase (ST). Southern blot analysis indicated that multiple copies of the glycosyltransferases genes were integrated into the S2 cell genome. A lectin blot analysis also indicated that recombinant COX-1 from S2COX-1/GalT-ST cells contained the glycan residues of β1,4-linked galactose and α2,6-linked sialic acid. The specific peroxidase activity of recombinant sialylated COX-1 from S2COX-1/GalT-ST cells was 41,250 U mg−1, indicating an increase of approximately 22% compared with a non-sialylated control (33,850 U mg−1) from S2COX-1 cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
Zinc complexes of 3-hydroxymethyl-13/15-carbonyl-chlorins having a six-membered lactone as the E-ring were prepared by modifying purpurin-18 as models of bacteriochlorophyll-d, one of the chlorophyllous pigments in the main light-harvesting antenna systems (chlorosomes) of green photosynthetic bacteria. The synthetic 13-carbonylated compound self-aggregated in 1%(v/v) tetrahydrofuran and hexane to give large oligomers possessing red-shifted and broadened electronic absorption bands and intense circular dichroism bands at the shifted Q y region, indicating that the supramolecular structure of the resulting self-aggregate was similar to those of natural and artificial chlorosomal aggregates. The red-shift value observed here was smaller than the reported values in chlorosomal pigments having a five-membered keto-ring, which was ascribable to a weaker intermolecular hydrogen-bonding of 13-C=O with 31-OH in a supramolecule of the former self-aggregate and suppression of the π–π interaction among the composite chlorins. On the other hand, the isomeric 15-carbonylated molecule was monomeric even in the nonpolar organic solvent, confirming the reported proposal that the linear orientation of three interactive moieties, OH, C=O and Zn, in a molecule is requisite for its chlorosomal self-aggregation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
《FEBS letters》1985,191(1):34-38
A polypeptide soluble in organic solvents was isolated from whole membrane fractions of the green thermophilic bacterium Chloroflexus aurantiacus by chromatography on Sephadex LH-60, Whatman DE-32 and Bio Gel P-10. The complete amino acid sequence of this 4.9 kDa polypeptide (44 amino acid residues) was determined. The polypeptide shows a 3-domain structure, similar to the domain structure of the antenna BChI polypeptides of purple photosynthetic bacteria, and sequence homologies (27–39%) to the light-harvesting α-polypeptides of the B870 (890) antenna complexes from purple bacteria. Therefore, the 4.9 kDa polypeptide is designated B(808-866)-α. The typical His residue (conserved His residue identified in all antenna polypeptides of purple bacteria as possible BChI binding site) is found within the hydrophobic domain, which extends from Asn 10 to Leu 30.  相似文献   

13.
Small-angle neutron scattering (SANS) on the unilamellar vesicle (ULV) populations (diameter 500 and 1,000 Å) in D2O was used to characterize lipid vesicles from dimyristoylphosphatidylcholine (DMPC) at three phases: gel Lβ′, ripple Pβ′ and liquid Lα. Parameters of vesicle populations and internal structure of the DMPC bilayer were characterized on the basis of the separated form factor (SFF) model. Vesicle shape changes from nearly spherical in the Lα phase to elliptical in the Pβ′ and Lβ′ phases. This is true for vesicles prepared via extrusion through pores with the diameter 500 Å. Parameters of the internal bilayer structure (thickness of the membrane and the hydrophobic core, hydration and the surface area of the lipid molecule) were determined on the basis of the hydrophobic–hydrophilic (HH) approximation of neutron scattering length density across the bilayer ρ(x) and of the step function (SF) approximation of ρ(x). DMPC membrane thickness in the Lα phase (T=30°C) demonstrates a dependence on the membrane curvature for extruded vesicles. Prepared via extrusion through 500 Å diameter pores, vesicle population in the Lα phase has the following characteristics: average value of minor semi-axis 266±2 Å, ellipse eccentricity 1.11±0.02, polydispersity 26%, thickness of the membrane 48.9±0.2 Å and of the hydrophobic core 19.9±0.4 Å, surface area 60.7±0.5 Å2 and number of water molecules 12.8±0.3 per DMPC molecule. Vesicles prepared via extrusion through pores with the diameter 1,000 Å have polydispersity of 48% and membrane thickness of 45.5±0.6 Å in the Lα phase. SF approximation was used to describe the DMPC membrane structure in Lβ′ (T=10°C) and Pβ′ (T=20°C) phases. Extruded DMPC vesicles in D2O have membrane thickness of 49.6±0.5 Å in the Lβ′ phase and 48.3±0.6 Å in the Pβ′ phase. The dependence of the DMPC membrane thickness on temperature was restored from the SANS experiment.  相似文献   

14.
In recent years, it has become clear that the neuronal nicotinic acetylcholine receptor (nAChR) is a valid target in the treatment of a variety of diseases, including Alzheimer’s disease, anxiety, and nicotine addiction. As with most membrane proteins, information on the three-dimensional (3D) structure of nAChR is limited to data from electron microscopy, at a resolution that makes the application of structure-based design approaches to develop specific ligands difficult. Based on a high-resolution crystal structure of AChBP, homology models of the extracellular domain of the neuronal rat and human nAChR subtypes α4β2 and α7 (the subtypes most abundant in brain) were built, and their stability assessed with molecular dynamics (MD). All models built showed conformational stability over time, confirming the quality of the starting 3D model. Lipophilicity and electrostatic potential studies performed on the rat and human α4β2 and α7 nicotinic models were compared to AChBP, revealing the importance of the hydrophobic aromatic pocket and the critical role of the α-subunit Trp—the homolog of AChBP-Trp 143—for ligand binding. The models presented provide a valuable framework for the structure-based design of specific α4β2 nAChR subtype ligands aimed at improving therapeutic and diagnostic applications. Figure Electrostatic surface potential of the binding site cavity of the neuronal nicotinic acetylcholine receptor (nAChR). Nicotinic models performed with the MOLCAD program: a rat α7, b rat α4β2, c human α7, d human α4β2. All residues labeled are part of the α7 (a,c) or α4 (b,d) subunit with the exception of Phe 117, which belongs to subunit β2 (d). Violet Very negative, blue negative, yellow neutral, red very positive  相似文献   

15.
Evidence for myxobacterial origin of eukaryotic defensins   总被引:1,自引:0,他引:1  
Zhu S 《Immunogenetics》2007,59(12):949-954
Antimicrobial defensins with the cysteine-stabilized α-helical and β-sheet (CSαβ) motif are a large family of ancient, evolutionarily related innate immunity effectors of multicellular organisms. Although the widespread distribution in plants, fungi, and invertebrates suggests their uniqueness to Eukarya, it is unknown whether these eukaryotic defensins originated before or posterior to the emergence of eukaryotes. In this study, we provide evidence in support of the existence of defensin-like peptides (DLPs) in myxobacteria based on structural bioinformatics analysis, which recognized two bacterial peptides with a conserved cysteine-stabilized α-helical motif, a nested structural unit of the CSαβ motif. Similarity in sequence and structure to fungal DLPs together with restricted distribution to the myxobacteria as well as central role of the myxobacteria in the origin of eukaryotes suggest that the bacterial DLPs represent the ancestor of the eukaryotic defensins and could mediate immune defense of early eukaryotes after gene transfer to the proto-eukaryotic genome. Our work thus offers a basis for further investigation of prokaryotic origin of eukaryotic immune effector molecules. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Recently [Marquardt et al. (2000) Gene 255: 257–265], we isolated a gene encoding a polypeptide of the light-harvesting complex of Photosystem I (LHC I) of the red alga Galdieria sulphuraria. By screening a G. sulphuraria cDNA library with a DNA probe coding for the conserved first transmembrane helix of this protein we isolated four additional genes coding for LHC I polypeptides. The deduced preproteins had calculated molecular masses of 24.6–25.6 kDa and isoelectric points of 8.09–9.82. N-terminal sequencing of a LHC I polypeptide isolated by gel electrophoresis allowed us to determine the cleavage site of the transit peptide of one of the deduced polypeptides. The mature protein has a calculated molecular mass of 20.6 kDa and an isoelectric point of 7.76. The genes were amplified from nuclear G. sulphuraria DNA by polymerase chain reaction (PCR) using oligonucleotides annealing in the regions of the start and stop codons as primers. All genomic sequences were 80–300 base pairs longer than the PCR products obtained from the respective cDNA clones, pointing to the existence of 1–5 introns per gene. The G. sulphuraria genes form a homogeneous gene family with overall pairwise amino acid identities of 46.0–56.6%. Homology to two diatom, one cryptophytic and two higher plant light-harvesting polypeptides was lower with pairwise identities of 21.1–34.1%. Only one diatom polypeptide showed a higher degree of identity of up to −39.3%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
We studied the functional effects of single amino acid substitutions in the postulated M4 transmembrane domains of Torpedo californica nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes at the single-channel level. At low ACh concentrations and cold temperatures, the replacement of wild-type α418Cys residues with the large, hydrophobic amino acids tryptophan or phenylalanine increased mean open times 26-fold and 3-fold, respectively. The mutation of a homologous cysteine in the β subunit (β447Trp) had similar but smaller effects on mean open time. Coexpression of α418Trp and β447Trp had the largest effect on channel open time, increasing mean open time 58-fold. No changes in conductance or ion selectivity were detected for any of the single subunit amino acid substitutions tested. However, the coexpression of the α418Trp and β447Trp mutated subunits also produced channels with at least two additional conductance levels. Block by acetylcholine was apparent in the current records from α418Trp mutants. Burst analysis of the α418Trp mutations showed an increase in the channel open probability, due to a decrease in the apparent channel closing rate and a probable increase in the effective opening rate. Our results show that modifications in the primary structure of the α- and β subunit M4 domain, which are postulated to be at the lipid-protein interface, can significantly alter channel gating, and that mutations in multiple subunits act additively to increase channel open time. Received: 27 September 1996/Revised: 28 January 1997  相似文献   

18.
We have examined the properties and interactions of expressed polypeptide fragments from the N-terminus of the α-chain and the C-terminus of the β-chain of human erythroid spectrin. Each polypeptide comprises one complete structural repeating unit, together with the incomplete repeat that interacts with its partner when spectrin tetramers are formed. The shared repeat thus generated is made up of two helices from the C-terminal part of the β-chain and one helix from the N-terminus of the α-chain. Three mutant β-chain fragments with amino acid substitutions in the incomplete terminal repeat were also studied. The α- and β-chain fragments were both substantially monomeric, as shown by sedimentation equilibrium. Circular dichroism analysis and thermal denaturation profiles revealed that the complete repeat present in each fragment had entered the stable tertiary fold. Unexpectedly, the conformational stability of the folded β-chain repeat was found to be grossly perturbed by the mutations, all of them well beyond its C-terminal boundary; possible explanations for this phemomenon are considered. Sedimentation equilibrium showed that in equimolar mixtures the wild-type α- and β-chain peptides formed a 1:1 complex. Mixing curves, observed by circular dichroism, revealed that association was accompanied by an increase in α-helicity. From continuous-variation profiles an association constant in the range 1–2×106 M–1 was inferred. The association was unaffected by the apparently unstructured anionic tail of 54 residues, found at the C-terminus of the spectrin β-chain. Of the three mutations in the β-chain fragment, one (an Ala→Val replacement in the A helix segment of the incomplete repeat) had a relatively small effect on the association with the α-chain fragment, whereas Trp→Arg mutations in the A and in the remote B helix segments were much more deleterious. These observations are consistent with the relative severities of the haemolytic conditions associated with the mutations. Received: 10 August 1998 / Revised version: 13 October 1998 / Accepted: 13 October 1998  相似文献   

19.
The application of the peptide-linked β2-microglobulin (β2m) strategy is limited in some cases due to the incompatibility between the sequences of the peptides and the restriction sites of the plasmid vectors. An isocaudamer technique was adapted to overcome this restriction. Three peptide-linked β2m genes, HBc18–27-hβ2m gene, OVA257–264-mβ2m gene and HER2/neu369–377-mβ2m gene, were inserted into the pET28a vectors with this technique. The corresponding proteins were expressed in Escherichia coli with yields of over 50 mg/l culture and purities of over 80%. This strategy facilitates the construction of peptide-linked β2m molecules and will simplify the preparation of major histocompatibility complex-peptide complexes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Sorimachi K  Okayasu T 《Amino acids》2008,34(4):661-668
When nucleotide (G, C, T and A) contents were plotted against each nucleotide, their relationships were clearly expressed by a linear formula, y = αx + β in the coding and non-coding regions. This linear relationship was obtained from the complete single-stranded DNA. Similarly, nucleotide contents at all three codon positions were expressed by linear regression lines based on the content of each nucleotide. In addition, 64 codon usages were also expressed by linear formulas against nucleotide content. Thus, the nucleotide content not only in coding sequence but also in non-coding sequence can be expressed by a linear formula, y = αx + β, in 145 organisms (112 bacteria, 15 archaea and 18 eukaryotes). Based on these results, the ratio of C/T, G/T, C/A or G/A one can essentially estimate all four nucleotide contents in the complete single-stranded DNA, and the determination of any ratio of two kinds of nucleotides can essentially estimate four nucleotide contents, nucleotide contents at the three different codon positions and codon distributions at 64 codons in the coding region. The maximum and minimum values of G content were ∼0.35 and ∼0.15, respectively, among various organisms examined. Codon evolution occurs according to linear formulas between these two values. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号