首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
J B Virgin  J P Bailey 《Genetics》1998,149(3):1191-1204
Homologous recombination is increased during meiosis between DNA sequences at the same chromosomal position (allelic recombination) and at different chromosomal positions (ectopic recombination). Recombination hotspots are important elements in controlling meiotic allelic recombination. We have used artificially dispersed copies of the ade6 gene in Schizosaccharomyces pombe to study hotspot activity in meiotic ectopic recombination. Ectopic recombination was reduced 10-1000-fold relative to allelic recombination, and was similar to the low frequency of ectopic recombination between naturally repeated sequences in S. pombe. The M26 hotspot was active in ectopic recombination in some, but not all, integration sites, with the same pattern of activity and inactivity in ectopic and allelic recombination. Crossing over in ectopic recombination, resulting in chromosomal rearrangements, was associated with 35-60% of recombination events and was stimulated 12-fold by M26. These results suggest overlap in the mechanisms of ectopic and allelic recombination and indicate that hotspots can stimulate chromosomal rearrangements.  相似文献   

2.
We have examined meiotic recombination between two defined leu2 heteroalleles present at the normal LEU2 locus and in leu2-containing plasmids inserted at four other genomic locations. In diploids where the two leu2 markers were present at allelic locations on parental homologs, the frequency of Leu2+ spores varied 38-fold, in a location-dependent manner. These results indicate that recombination in a genetic interval can be modulated by sequences at least 2.7 kb outside that interval. Leu2+ meiotic segregants were also recovered from diploids where LEU2 was marked with one heteroallele, and the other leu2 heteroallele was inserted at another genomic location. These products of ectopic interactions, between dispersed copies of leu2 sharing only 2.2 kb of homology, were recovered at a frequency comparable to that observed in corresponding allelic crosses. This high frequency of ectopic meiotic recombination was observed in crosses where both recombining partners could potentially pair with sequences at an allelic position. In addition, a significant fraction (22-50%) of these ectopic recombinants were associated with crossing over of flanking sequences.  相似文献   

3.
Duplicated genes and repetitive sequences are distributed throughout the genomes of complex organisms. The homology between related sequences can promote nonallelic (ectopic) recombination, including gene conversion and reciprocal exchange. Resolution of these events can result in translocations, deletions, or other harmful rearrangements. In yeast, ectopic recombination between sequences on nonhomologous chromosomes occurs at high frequency. Because the mammalian genome is replete with duplicated sequences and repetitive elements, high levels of ectopic exchange would cause aneuploidy and genome instability. To understand the factors regulating ectopic recombination in mice, we evaluated the effects of homology length on gene conversion between unlinked sequences in the male germline. Previously, we found high levels of gene conversion between lacZ transgenes containing 2557 bp of homology. We report here that genetic background can play a major role in ectopic recombination; frequency of gene conversion was reduced by more than an order of magnitude by transferring the transgenes from a CF1 strain background to C57BL/6J. Additionally, conversion rates decreased as the homology length decreased. Sequences sharing 1214 bp of sequence identity underwent ectopic conversion less frequently than a pair sharing 2557 bp of identity, while 624 bp was insufficient to catalyze gene conversion at significant levels. These results suggest that the germline recombination machinery in mammals has evolved in a way that prevents high levels of ectopic recombination between smaller classes of repetitive sequences, such as the Alu family. Additionally, genomic location appeared to influence the availability of sequences for ectopic recombination. Received: 12 September 1997 / Accepted: 29 December 1997  相似文献   

4.
5.
Ectopic recombination between interspersed repeat sequences generates chromosomal rearrangements that have a major impact on genome structure. A survey of ectopic recombination in the region flanking the white locus of Drosophila melanogaster identified 25 transposon-mediated rearrangements from four parallel experiments. Eighteen of the 25 were generated from females carrying X chromosomes heterozygous for interspersed repeat sequences. The cytogenetic and molecular analyses of the rearrangements and the parental chromosomes show: (1) interchromosomal and intrachromosomal recombinants are generated in about equal numbers; (2) ectopic recombination appears to be a meiotic process that is stimulated by the interchromosomal effect to about the same degree as regular crossing over; (3) copies of the retrotransposon roo were involved in all of the interchromosomal exchanges; some copies were involved much more frequently than others in the target region; (4) homozygosis for interspersed repeat sequences and other sequence variations significantly reduced ectopic recombination.  相似文献   

6.
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.  相似文献   

7.
Allelic and Ectopic Recombination between Ty Elements in Yeast   总被引:18,自引:9,他引:9       下载免费PDF全文
M. Kupiec  T. D. Petes 《Genetics》1988,119(3):549-559
Allelic and nonallelic (ectopic) recombination events were analyzed in a set of isogenic strains that carry marked Ty elements. We found that allelic recombination between Ty elements occurred at normal frequencies both in meiosis and mitosis. The marked Ty elements were involved in a large variety of different types of ectopic recombination and this variety was greater in mitosis than in meiosis. Allelic and ectopic recombination events occurred at similar frequencies in mitosis, but allelic recombination predominated in meiosis. Some of the types of ectopic mitotic recombination indicated the common occurrence of concerted recombination events. The length of homology represented by a delta element (330 bp) seemed to be sufficient for some types of mitotic and meiotic recombination.  相似文献   

8.
9.
In Saccharomyces cerevisiae, DNA double-strand breaks (DSBs) initiate meiotic recombination at open sites in chromatin, which display a meiosis-specific increase in micrococcal nuclease (MNase) sensitivity. The arg4 promoter contains such a DSB site. When arg4 sequences are placed in a pBR322-derived insert at HIS4 (his4 :: arg4 ), the presence of strong DSB sites in pBR322 sequences leads to an almost complete loss of breaks from the insert-borne arg4 promoter region. Most of the MNase-sensitive sites occurred at similar positions in insert-borne and in normal ARG4 sequences, indicating that hotspot inactivation is not a consequence of changes in nucleosome positioning. However, a meiosis-specific increase in MNase hypersensitivity was no longer detected at the inactive insert-borne arg4 DSB site. Elimination of pBR322 sequences restored DSBs to the insert-borne arg4 promoter region and also restored the meiotic induction of MNase hypersensitivity. Thus, the meiotic induction of MNase hypersensitivity at the DSB sites is suppressed and activated in parallel to DSBs themselves, without changes in the underlying DNA sequence or nucleosome positioning. We suggest that meiosis-specific changes in chromatin at a DSB site are a signal reflecting a pivotal step in DSB formation.  相似文献   

10.
11.
ASH. Goldman  M. Lichten 《Genetics》1996,144(1):43-55
To examine constraints imposed on meiotic recombination by homologue pairing, we measured the frequency of recombination between mutant alleles of the ARG4 gene contained in pBR322-based inserts. Inserts were located at identical loci on homologues (allelic recombination) or at different loci on either homologous or heterologous chromosomes (ectopic recombination). Ectopic recombination between interstitially located inserts on heterologous chromosomes had an efficiency of 6-12% compared to allelic recombination. By contrast, ectopic recombination between interstitial inserts located on homologues had relative efficiencies of 47-99%. These findings suggest that when meiotic ectopic recombination occurs, homologous chromosomes are already colocalized. The efficiency of ectopic recombination between inserts on homologues decreased as the physical distance between insert sites was increased. This result is consistent with the suggestion that during meiotic recombination, homologues are not only close to each other, but also are aligned end to end. Finally, the efficiency of ectopic recombination between inserts near telomeres (within 16 kb) was significantly greater than that observed with inserts >50 kb from the nearest telomere. Thus, at the time of recombination, there may be a special relationship between the ends of chromosomes not shared with interstitial regions.  相似文献   

12.
OsHUS1 Facilitates Accurate Meiotic Recombination in Rice   总被引:1,自引:0,他引:1  
Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.  相似文献   

13.
14.
A strong correlation between GC content and recombination rate is observed in many eukaryotes, which is thought to be due to conversion events linked to the repair of meiotic double-strand breaks. In several organisms, the length of conversion tracts has been shown to decrease exponentially with increasing distance from the sites of meiotic double-strand breaks. I show here that this behavior leads to a simple analytical model for the evolution and the equilibrium state of the GC content of sequences devoid of meiotic double-strand break sites. In the yeast Saccharomyces cerevisiae, meiotic double-strand breaks are practically excluded from protein-coding sequences. A good fit was observed between the predictions of the model and the variations of the average GC content of the third codon position (GC3) of S. cerevisiae genes. Moreover, recombination parameters that can be extracted by fitting the data to the model coincide with experimentally determined values. These results thus indicate that meiotic recombination plays an important part in determining the fluctuations of GC content in yeast coding sequences. The model also accounted for the different patterns of GC variations observed in the genes of Candida species that exhibit a variety of sexual lifestyles, and hence a wide range of meiotic recombination rates. Finally, the variations of the average GC3 content of human and chicken coding sequences could also be fitted by the model. These results suggest the existence of a widespread pattern of GC variation in eukaryotic genes due to meiotic recombination, which would imply the generality of two features of meiotic recombination: its association with GC-biased gene conversion and the quasi-exclusion of meiotic double-strand breaks from coding sequences. Moreover, the model points out to specific constraints on protein fragments encoded by exon terminal sequences, which are the most affected by the GC bias.  相似文献   

15.
Chromosomal rearrangements can result from crossing over during ectopic homologous recombination between dispersed repetitive DNA. We have previously shown that meiotic ectopic recombination between artificially dispersed ade6 heteroalleles in the fission yeast Schizosaccharomyces pombe frequently results in chromosomal rearrangements. The same recombination substrates have been studied in mitotic recombination. Ectopic recombination rates in haploids were approximately 1-4 x 10(-6) recombinants per cell generation, similar to allelic recombination rates in diploids. In contrast, ectopic recombination rates in heterozygous diploids were 2.5-70 times lower than allelic recombination or ectopic recombination in haploids. These results suggest that diploid-specific factors inhibit ectopic recombination. Very few crossovers occurred in ade6 mitotic recombination, either allelic or ectopic. Allelic intragenic recombination was associated with 2% crossing over, and ectopic recombination between multiple different pairing partners showed 1-7% crossing over. These results contrast sharply with the 35-65% crossovers associated with meiotic ade6 recombination and suggest either differential control of resolution of recombination intermediates or alternative pathways of recombination in mitosis and meiosis.  相似文献   

16.
The synaptonemal complex (SC) links two meiotic prophase chromosomal events: homolog pairing and crossover recombination. SC formation involves the multimeric assembly of coiled-coil proteins (Zip1 in budding yeast) at the interface of aligned homologous chromosomes. However, SC assembly is indifferent to homology and thus is normally regulated such that it occurs only subsequent to homology recognition. Assembled SC structurally interfaces with and influences the level and distribution of interhomolog crossover recombination events. Despite its involvement in dynamic chromosome behaviors such as homolog pairing and recombination, the extent to which SC, once installed, acts as an irreversible tether or maintains the capacity to remodel is not clear. Experiments presented here reveal insight into the dynamics of the full-length SC in budding yeast meiotic cells. We demonstrate that Zip1 continually incorporates into previously assembled synaptonemal complex during meiotic prophase. Moreover, post-synapsis Zip1 incorporation is sufficient to rescue the sporulation defect triggered by SCs built with a mutant version of Zip1, Zip1-4LA. Post-synapsis Zip1 incorporation occurs initially with a non-uniform spatial distribution, predominantly associated with Zip3, a component of the synapsis initiation complex that is presumed to mark a subset of crossover sites. A non-uniform dynamic architecture of the SC is observed independently of (i) synapsis initiation components, (ii) the Pch2 and Pph3 proteins that have been linked to Zip1 regulation, and (iii) the presence of a homolog. Finally, the rate of SC assembly and SC central region size increase in proportion to Zip1 copy number; this and other observations suggest that Zip1 does not exit the SC structure to the same extent that it enters. Our observations suggest that, after full-length assembly, SC central region exhibits little global turnover but maintains differential assembly dynamics at sites whose distribution is patterned by a recombination landscape.  相似文献   

17.
Earlier, using bioinformatic methods, we reported the identification of repeated DNA sequences (RS), presumably responsible for the attachment of chromatin loops to the lateral elements of synaptonemal complex in meiotic chromosomes. In the present study, consensus sequences for this class of RS were identified. It was demonstrated that at least part of these sequences belonged to the AluJb subfamily of Alu sequences. The Alu copies distribution along the major human histocompatibility complex (MHC) and their spatial separation from the sites of meiotic recombination was examined. It was demonstrated that simple sequences, like (GC/CA)n, were flanking meiotic recombination sites. A model of the RS organization in meiotic chromosome, most efficiently linking experimental data on the meiotic recombination in MHC and the in silico data on the RS localization (the coefficient of multiple correlation, r = 0.92) is suggested.  相似文献   

18.
K. S. McKim  A. M. Howell    A. M. Rose 《Genetics》1988,120(4):987-1001
In the nematode Caenorhabditis elegans, recombination suppression in translocation heterozygotes is severe and extensive. We have examined the meiotic properties of two translocations involving chromosome I, szT1(I;X) and hT1(I;V). No recombination was observed in either of these translocation heterozygotes along the left (let-362-unc-13) 17 map units of chromosome I. Using half-translocations as free duplications, we mapped the breakpoints of szT1 and hT1. The boundaries of crossover suppression coincided with the physical breakpoints. We propose that DNA sequences at the right end of chromosome I facilitate pairing and recombination. We use the data from translocations of other chromosomes to map the location of pairing sites on four other chromosomes. hT1 and szT1 differed markedly in their effect on recombination adjacent to the crossover suppressed region. hT1 had no effect on recombination in the adjacent interval. In contrast, the 0.8 map unit interval immediately adjacent to the szT1(I;X) breakpoint on chromosome I increased to 2.5 map units in translocation heterozygotes. This increase occurs in a chromosomal interval which can be expanded by treatment with radiation. These results are consistent with the suggestion that the szT1(I) breakpoint is in a region of DNA in which meiotic recombination is suppressed relative to the genomic average. We propose that DNA sequences disrupted by the szT1 translocation are responsible for determining the frequency of meiotic recombination in the vicinity of the breakpoint.  相似文献   

19.
Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity.  相似文献   

20.
The hotspots of meiotic recombination in the human genome can be localized by genetic techniques. The resolution of these techniques is in the range of kilobases and depends on the density of the physical markers identifying allelic variants of the chromosomal loci. We thought it would be interesting to localize these sites with higher resolution. Assuming that some human chromosomal sites conserve their propensity for recombination when cloned in yeast, we localized the hotspots of recombination in several yeast artificial chromosomes (YACs) carrying human DNA. A number of potential recombination hotspots could be identified in the clones studied. Among them there are two classes of sites that are particularly recombination prone also in human meiotic cells: sites associated with CpG islands and sites located in the vicinity of long minisatellite sequences.Communicated by G. P. Georgiev  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号