首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
EFFECT OF UNDERNUTRITION ON CELL FORMATION IN THE RAT BRAIN   总被引:4,自引:2,他引:2  
Abstract— Rats were undernourished by approximately halving the normal food given from the 6th day of gestation throughout lactation. Growth of the foetuses was nearly normal, in marked contrast to the severe retardation caused by undernutrition during the suckling period. In comparison with controls the size and the DNA content of the brain were permanently reduced by undernutrition during the suckling period: this effect was relatively small, approx. 15 per cent decrease at 21 and 35 days. The rate of 14C incorporation into brain DNA at 30 min after administration of [2-14C] thymidine was taken as an index of mitotic activity; compared with controls there was severe reduction in mitotic activity (maximal decrease by about 80 per cent at 6 days in the cerebrum and by 70 per cent at 10 days in the cerebellum). The rate of acquisition of cells was calculated from the slopes of the logistic curves fitted to the estimated DNA contents. In normal animals the maximal slope was attained at 2·7 days and at 12·8 days after birth in cerebrum and cerebellum respectively; the daily acquisition of cells at these times was 4·8 × 106 and 18 × 106 cells respectively. The fractional increase in cell number at the maximum was 5·4 percent per day in the cerebrum and 15·2 per cent per day in the cerebellum. The rate of acquisition of cells relative to the rate of mitotic activity was higher in the brains of undernourished animals than in controls. One of the compensatory mechanisms for the severe depression of mitotic activity in the brain of undernourished animals Seems to involve a reduction in the normal rate of cell loss.  相似文献   

2.
  • 1 The rapid and extensive conversion of glucose-carbon into amino acids is an index of the final coordination of the mechanisms underlying energy metabolism in the adult brain. This phenomenon develops in the rat during a short period extending from 10 to about 19 days after birth. The underlying factors have been analysed.
  • 2 The development of the pattern of distribution of glucose-carbon characteristic of the adult brain was markedly influenced by the thyroid state of the animals. The age-curve for the conversion of glucose-carbon into brain amino acids was displaced to the left after treatment with thyroid hormone (T3) in infancy thus indicating an accelerated maturation. Conversely, neonatal thyroidectomy resulted in a significant retardation in the conversion of glucose-carbon into amino acids.
  • 3 The specific radioactivity of glutamate increased five-fold in the brain of normal rats from the 10th to the 19th day of age. The values (as a percentage of those for littermate controls) were 220 in the case of the 10 day-old thyroid treated rats and about 30 for the 19 day-old thyroid deficient animals. At the age of 10 days neither treatment affected the concentration of glutamate which was also only slightly less than the control values in the brain of 19 day-old thyroid deficient animals (–17 per cent).
  • 4 Specific pool(s) of glutamate associated with the formation of GABA can be demonstrated in the brain of 19 day-old rats after administration of [U-14C]glucose as a result of anoxia post mortem. These pools did not develop in the brain of 10 day-old animals. Neonatal thyroidectomy retarded the development of these glutamate pools.
  • 5 Evidence is summarized which indicates that the development of the rapid conversion of glucose-carbon into amino acids reflects the enlargement, during maturation, of the metabolic compartments which are associated with neuronal processes.
  相似文献   

3.
—The activities of sRNA-aminoacyl synthetases (EC 6.1.1) were investigated in the cerebral white and grey matter of rabbits subjected during their prenatal life to a single X-ray dose of 150 rad. The results of investigations have shown that ionizing radiation acting during intrauterine development of the experimental animal brings about a distinct depression of all sRNA-aminoacyl synthetase activities in the newborn irradiated litter. During the postnatal development of these animals the activities of some of the synthetases further decreased and even at adulthood, where they are normally very low, their activities were below the control values. The activities of some other synthetases, after the initial depression, showed no further decrease and at adulthood had values comparable to controls. Our results indicate clearly that prenatal exposure to ionizing radiation also affects the step of protein biosynthesis which depends on the activity of sRNA-aminoacyl synthetases.  相似文献   

4.
BIOCHEMICAL EFFECTS OF THYROID DEFICIENCY ON THE DEVELOPING BRAIN   总被引:11,自引:1,他引:11  
Abstract— The effects of neonatal thyroidectomy on some constituents of the cerebrum, cerebellum and liver of the rat have been studied during the first 7 weeks of life. In the normal rat between the 6th and 14th post-natal days the RNA content per unit of DNA in the brain increased by 70 per cent. Although the brain continued to grow from the 14th to the 35th day, the amount of RNA relative to DNA decreased by about 20 per cent. The ratio of protein to DNA increased during the whole period studied and in the cerebral cortex it was more than trebled between the age of 6 and 35 days. The growth of the cerebellum extended over a longer period than that of the cerebrum, its weight increasing by 88 per cent between the ages of 14 and 35 days as compared with a cerebral increase of 34 per cent. The DNA content showed a 50 per cent increase during this period. Qualitatively these maturational changes were not affected by neonatal thyroidectomy. Quantitative changes, which applied equally to the cerebral cortex and brain as a whole, were observed. At the age of 35 days, the weights of the cerebral hemispheres and cerebellum were reduced by thyroidectomy by 20 per cent; the overall DNA content per organ did not change, but the amounts of protein and RNA relative to DNA decreased significantly. It is therefore inferred that thyroid deficiency affects the size of the cells in brain and cerebellum rather than their total number. Conversely, the cell population of the liver was only a quarter of that in the control. There was a small but significant decrease in the hepatic protein and RNA content in the hypothyroid animal. The activities of the following enzymes which served as markers for subcellular fractions in homogenates of cerebral cortex were determined: lactate dehydrogenase for the supernatant, glutamate dehydrogenase for the mitochondrial and glutamate decarboxylase for the synaptosomal fractions. When the activities were expressed on a fresh weight basis a significant decrease by comparison with the control values was observed only in the case of glutamate decarboxylase (—15 per cent at the age of 17–32 days); when the activities were based on DNA content all values were reduced, probably as a result of the general decrease in cell size. Pyrimidine metabolism of brain and liver, studied after the administration of [6-14C]-orotic acid, was not affected in either tissue by neonatal thyroidectomy. A small but significant reduction in the incorporation of labelled pyrimidine nucleotides in liver RNA was observed, but no significant decrease in the incorporation in cerebral RNA was found in the hypothyroid rats.  相似文献   

5.
Abstract— The postnatal development of three enzymes in the rat forebrain was studied. When expressed per tissue weight the catechol- O -methyl transferase (COMT) increased 2-fold from birth to adult age, the lactate dehydrogenase (LDH) 4-fold and the monoamine oxidase (MAO) 12-fold. Expressed per mg protein the increase in the enzyme activities in the subcellular fractions which contained the main part of the different enzymes was still 2–4-fold for COMT and LDH while for MAO it was 4-fold.
There was a relative increase in the COMT activity in the P2 fraction (synaptosomes and mitochondria). This increase was identical with a corresponding increase in LDH activity and protein and was probably due to growth of nerve terminals. The COMT in the cytoplasm of the synaptosomes showed the same increase relative to the proteins as did the 'free' cytoplasmic enzyme.
The conclusion is drawn that the enzymes in the rat brain show a certain degree of development during brain growth. An additional increase of some enzymes is due to the development of specialized structures such as mitochondria and nerve terminals with synapses. COMT is not related to any such specialized structure.  相似文献   

6.
Abstract— The concentrations of several metabolites, including glucose, glycogen, hexose phosphates, adenine nucleotides phosphocreatine, amino acids and some tricarboxylate cycle intermediates, have been estimated in cerebral tissues of rats treated with anticonvulsant doses of trimethadione, ethosuximide and chlordiazepoxide.
Anticonvulsant administration, in each case, produced an increase in brain glucose, but only trimethadione and ethosuximide resulted in elevated brain/blood glucose ratios. It was concluded that the apparent rise in intracellular glucose with the latter drugs may, in part, be the result of a stimulation of glucose transport from blood into the brain. Anticonvulsant administration was also shown to result in a depression of some tricarboxylate cycle intermediates. The pattern of these metabolite changes was in effect similar to those reported independently in mice treated with anaesthetics and it was therefore concluded that these differences probably reflected a depression in metabolic rate.
Metabolic alterations in general do not indicate aetiology but rather effects of the drug activities. However, a role implicating increased intracellular glucose levels with membrane stabilization is discussed.  相似文献   

7.
—(1) The fate of [U-14C]leucine was studied in rat brain in vivo from birth to five weeks of age. The major route of leucine metabolism at all ages was conversion into protein. The rate of protein synthesis was low in the newborn; it reached a peak at about 15 days and slowed down moderately later. Incorporation into brain lipids was relatively low under the experimental conditions (less than 2 per cent of the total tissue 14C). (2) The conversion of leucine-carbon into amino acids associated with the tricarboxylic acid cycle was low in the first 9 days after birth (less than 4 per cent of the acid-soluble 14C at 10 min after injection) and increased rapidly until 15 days when the level characteristic of the adult was approached (about 20 per cent of the acid-soluble 14C). The results indicated that the oxidation of acetyl-CoA derived from leucine reached the adult level at an earlier age than that derived from glucose. (3) The glutamine/glutamate specific radioactivity ratio was 0·3 in the brain of newborn animals and increased progressively; it was 1·3 and 2·4 at 15 and 35 days of age respectively. The specific radioactivity of aspartate and of GABA relative to that of glutamate was less than 1 throughout the experimental period. (4) The factors involved in the development of metabolic compartmentation in brain were analysed. It is proposed that although the experimental results show that a 'small’compartment becomes functionally manifested with maturation the primary cause is the development of the‘large’metabolic compartment. (5) Morphological correlates of the metabolic compartments in brain tissue are suggested and it is concluded that the manifestation of metabolic compartmentation is related to maturational changes in glia-neuronal relations rather than to developmental processes affecting the individual components only.  相似文献   

8.
9.
THE ISOLATION OF CELL NUCLEI FROM RAT BRAIN   总被引:5,自引:3,他引:5       下载免费PDF全文
A method for preparing highly pure cell nuclei from adult rat brain, using both differential and isopycnic centrifugation in sucrose media, is described. The morphology of these preparations was examined by both phase contrast and electron microscopy. The isolated nuclei retained many aspects of their in situ morphology; in particular, the nuclear envelope was double layered and interrupted by pore-like discontinuities, and the nucleoli consisted of irregular masses of densely packed granules. Analyses of these nuclear preparations for cytochrome oxidase and cholinesterase activity, as well as RNA/DNA ratio, indicated minimal contamination with mitochondria and microsomes. Problems involving the homogenization technique, choice of ionic conditions in the homogenization medium, and choice of optimal density of the sucrose solution used for the final purification of nuclei are discussed. Results of application of the technique to isolation of adult rat liver nuclei are also reported.  相似文献   

10.
Abstract— Newborn rats from dams fed on a high fat diet developed increased ketonemia and significant hypertriglyceridemia i.e. "hyperketonemic pups". This perinatal metabolic stress led to an alteration in the developmental pattern of glycolytic intermediates in their brains.
In control rats, the concentration of glucose 6-phosphate (G6P) in the brain was high at birth, and gradually decreased to adult values by the third week of life. In contrast, the fructose-1,6-diphosphate (FDP) concentration was low at birth and increased thereafter. The lactate concentration was also high at birth but decreased to the adult level by the first day of life. In the brains of control pups, lactate and pyruvate concentrations remained relatively constant during the first 3 weeks of life.
In the brains of hyperketonemic pups, the concentration of G6P was the same as in the control animals at birth but decreased significantly during the first days of life. During early development the concentrations of FDP and pyruvate were significantly lower and the concentration of lactate, higher in the hyperketonemic pups as compared to the control group. The alteration in the concentration of these glycolytic intermediates in the brains of hyperketonemic pups indicated a change in the developmental pattern of glycolysis. The ratio of [lactate]/[pyruvate] also suggested an increased cytoplasmic redox potential in the brains of hyperketonemic pups during the first week of life.  相似文献   

11.
Abstract— Subcellular fractions isolated from rat brain aggregating cell cultures were studied by electron microscopy and showed the presence of typical myelin membranes. The chemical composition of purified culture myelin was similar to the fraction isolated from rat brain in terms of CNP specific activity, protein and lipid composition. The ratio of small to large components of myelin basic protein was comparable in culture and in vivo. These two proteins incorporated radioactive phosphorus. The major myelin glycoprotein was present and during development in culture its apparent molecular weight decreased although it never reached the position observed in myelin isolated from adult rats. In culture, the yield of myelin did not increase substantially between 33 and 50 days and was comparable to that of 15-day-old rat brain. The ratio basic protein to proteolipid protein resembled immature myelin and the cerebroside content was very low. A 'floating fraction' was isolated from the cultures and contained some myelin but mostly single membranes. Although these results indicate that myelin maturation is delayed in vitro this culture system provides substantial amounts of purified myelin to allow a complete biochemical analysis and metabolic studies during development.  相似文献   

12.
Abstract— Blood flow was measured quantitatively in 35 structures of the brains of dogs of various ages from birth to maturity. In general, values were low at birth and rose to maximal levels between 3 and 7 weeks of postnatal age; declines from the peak levels then followed until values characteristic of maturity were attained by 13 weeks of postnatal age. From relatively uniform perfusion rates throughout the brain at birth there gradually emerged a marked heterogeneity, in parallel with the structural and functional maturation and differentiation known to occur in the brain during this period of life. Our observations may reflect the summation of the changes in energy demands associated on the one hand with biosynthetic processes essential for growth and development and with the support for progressively increasing functional activities on the other.  相似文献   

13.
14.
Phenylacetate is not excreted to any significant extent as the free acid in rat urine, but must be metabolized in the liver and kidney, first to phenylacetyl-CoA, then to phenylacetylglycine. One hour after [14C]phenylacetate loading, the radioactivity in the liver and kidneys of the young rat could all be accounted for as unchanged phenylacetate (50-5573, phenylacetylglycine (35–40%), and phenylacetyl-CoA (5–8%). In the brain, the radioactivity was present mainly as phenylacetate (82–90%); only 10–18% was found as phenylacetyl-CoA. The formation of phenylacetyl-CoA appeared to be the rate limiting step in the clearance of phenylacetate. In the urine at least 95% of the radioactivity was present as phenylacetylglycine, less than 1% as phenylacetate, and 3–4% as phenylacetyl-CoA. The concentration of phenylacetylglycine in the urine was therefore used as a measure of the in vivo rate of phenylacetatc clearance. This detoxication process was found to develop postnatally. The formation of phenylacetylglycine was barely detecrabie in the newborn rat and remained relatively slow for about 2 weeks. During the third week a large increase in enzymatic activity, approx 40% occurred. Adult level of activity was reached in the 40 day old rat. The extremely slow rate of detoxication in the newborn animal was reflected in the persistence of high concentrations of phenylacetate in the tissues. The relevance of our findings to human phenyl-ketonuria is discussed  相似文献   

15.
The uptake and release of glutamate and of GABA, as well as the effect of high potassium concentrations (35 or 80 mM) hereupon, were studied by aid of 14C-labelled amino acids in brain cortex slices from rats of different ages between birth and adulthood. Both the extent of the uptake (i.e. the tissue/medium ratio of 14C at, or close to, equilibrium) and the rate of uptake (i.e. the tissue/ medium ratio of 14C after short (5 min) incubation periods) increased with age. Differences were, however, found between glutamate and GABA, and the extent of the GABA uptake had a distinct maximum during the second postnatal week. At all ages, high concentrations of potassium caused a decrease in the rate of GABA uptake but were without effect on the rate with which glutamate was taken up. The release of the two amino acids occurred with approximately the same half-time (50 min) in slices from animals of at least 14 days of age. Before that time the release of glutamate was somewhat faster, whereas that of GABA was much slower, especially during the first postnatal week (half-time 90 min). The ontogenetic alterations in the effect of excess potassium were complex and varied both between the two potassium concentrations used and between the two amino acids. The results are thus compatible with the existence of different transport systems for the two amino acids, They also suggest that glutamate may exert other functions in addition to its role as a putative transmitter.  相似文献   

16.
Abstract— Synaptosomal uptakes of a number of simple carbohydrates were strongly inhibited by cytochalasin B (K1= 7-9 × 10−8M). Phloretin (K1= 2-4 × 10−6M) and phloridzin (K1= 3-4 × 10−4M) were less inhibitory. Cytochalasin B competitively inhibited the uptakes of carbohydrates with saturable transport kinetics. Inhibition of sugar uptake was immediate on addition of cytochalasin B but was promptly reversed upon removal of the drug. Cytochalasin B had no effect on the efflux of D-glucos-amine or of the phosphorylated sugar, and did not affect intrasynaptosomal hexokinase(s). The synapto-somal uptakes of L-glucose, D-mannitol, L-fucose and the N -acetylated amino sugars were non-saturable and uninhibited by cytochalasin B. In the case of sugars which enter synaptosomes by both saturable and non-saturable processes, cytochalasin B could be used to selectively inhibit the saturable uptake components. The resultant non-saturable cytochalasin-insensitive uptake rates obtained were found to be widely different among the sugars studied, and must be corrected for in order to estimate accurate kinetic constants of the saturable processes.  相似文献   

17.
NUCLEAR RIBONUCLEASE ACTIVITIES OF RAT BRAIN DURING POSTNATAL DEVELOPMENT   总被引:2,自引:2,他引:0  
Abstract— The activities of alkaline and acidic RNAses were determined in soluble and insoluble fractions from nuclei of brain hemispheres of rats, aged from 1 day to adult. The activities increased rapidly and reached a maximum, at 30 days, of about 10 times (alkaline RNAsel or 5 times (acidic RNAse) that seen at day 1.  相似文献   

18.
—The elucidation of the translational regulatory events which function during the critical fetal and neonatal period is an important prerequisite to our understanding of normal, as well as abnormal, brain growth and differentiation. Brain cell suspensions and cell-free homogenates were employed to study the protein synthetic activity during the maturation of fetal- neural tissue. The results clearly demonstrated that while neural tissue from 1-day postnatal mice was 10 times more active in protein synthesis than brain tissue from adult mice, the former was many fold less active in translational events than fetal neural tissue from 13-day post-zygotic mice. Fetal polypeptide synthetic activity was found to decrease from the 13th day to the 19th day post-zygotic. This decrement in the translational activity was not due to amino acid availability or pools, or to differences, quantitatively or qualitatively, in polysome concentrations. The enhanced rate of protein synthetic activity measured with neural tissue from 13-day post-zygotic mice was shown to be due to an increase in rate of protein synthesis and not to an enhanced rate of protein degradation.  相似文献   

19.
—The subcutaneous administration of 2·0 mg DFP per kg to rats causes a diminution in the lysophosphatidylcholine content in the brain, which is followed by a decrease of glycerylphosphorylcholine concentration and by a reduced post mortem choline increase. This supports the hypothesis that a post mortem increase in choline is due to phosphatidylcholine breakdown. Since the amount of phosphatidylcholine in brains of di-isopropylfluorophosphate-treated rats increases, it is concluded that phospholipase A is inhibited by di-isopropylfluorophosphate, which corresponds to findings of other authors in vitro. The activity of glycerylphosphorylcholine diesterase (EC 3.1.4.2) is not altered.  相似文献   

20.
After the intraventricular injection of 6-hydroxydopamine (6-OHDA), there was a long lasting reduction in the brain concentrations of noradrenaline (NA) and dopamine (DA). The brain concentration of NA was affected by lower doses of 6-OHDA than were required to deplete DA. A high dose of 6-OHDA which depleted the brain of NA and DA by 81 per cent and 66 per cent respectively, had no significant effect on brain concentrations of 5-hydroxytryptamine (5-HT) or γ-aminobutyric acid (GABA). The fall in catecholamines was accompanied by a long lasting reduction in the activities of tyrosine hydroxylase and DOPA decarboxylase in the hypothalamus and striatum, areas in the brain which are rich in catecholamine containing nerve endings. There was, however, no consistent effect on catechol-O-methyl transferase or monamine oxidase activity in these brain regions. The initial accumulation of [3H]NA into slices of the hypothalamus and striatum was markedly reduced 22–30 days after 6-OHDA treatment. These results are consistent with the evidence in the peripheral sympathetic nervous system that 6-OHDA causes a selective destruction of adrenergic nerve endings and suggest that this compound may have a similar destructive effect on catecholamine neurones in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号