首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that Mediterranean oaks that emit isoprene, monoterpenes or no isoprenoids belong to different subgenera as indicated by morpho-taxonomy and molecular genetics. On the other hand, oaks from North America and Asia that are taxonomically similar to the Mediterranean monoterpene emitter Q. ilex emit isoprene only. We surmise that isoprene emission is a genetic character which evolved ancestrally in the oak genus since this is the prevalent emission type in oaks widespread around the world and adapted to different environments. This ancestral character may have been either lost or modified in more recent clades such as those originating the Mediterranean oaks. If our hypothesis is correct then the taxonomy of European oaks is validated by this independent trait. Isoprenoid emission could serve as a chemo-taxonomical marker and could be used to reconstruct the phylogeny of oaks in association with molecular markers. Received: 30 November 1997  / Accepted: 28 February 1998  相似文献   

2.
ABSTRACT

A survey was conducted to identify plants emitting isoprenoids in the Beijing area which could potentially contribute to smog episodes when combined with anthropogenic pollutants. The emission pattern was similar to that observed in the previously surveyed boreal ecosystems (Europe, North America). Most deciduous oaks are strong isoprene emitters; however, some of them do not emit isoprenoids and are therefore more suitable for the urban environment of Beijing. No emission of monoterpenes was found in Chinese oaks, and this trait seems therefore confined to the Mediterranean environment. The emission of isoprene was found in poplars and in some of the bamboo widespread in city parks and in the riparial vegetation surrounding the city. Chinese pine species emit monoterpenes when wounded, and the emission is not qualitatively different among species. Pinus tabulaeformis, one of the most important trees in China, is a low emitter compared to other pine species.  相似文献   

3.
European oaks have been reported to emit isoprene or monoterpenes derived from recently fixed photosynthetic carbon. The emission type is plant species specific and can be used as chemo‐taxonomic marker. In the present article the isoprenoid biochemical properties of mature Quercus × turneri‘Pseudoturneri’ hybrids resulting from a crossing of a Mediterranean evergreen monoterpene‐emitting species (subgenus Sclerophyllodrys; Quercus ilex L.) and an isoprene‐emitting deciduous oak species (subgenus Lepidobalanus; Quercus robur L.) are described. Both species are compared with respect to the capacity for isoprenoid synthesis and the actual isoprenoid emission pattern of different tree‐types. The analysis showed that the oak hybrid combines properties of both parental species. Furthermore, it could be shown that the enzyme activities of isoprene synthase and monoterpene synthases are reflected in the isoprenoid emission pattern of the hybrids as well as in the observed emission rates.  相似文献   

4.
We investigated the photosynthetic limitations occurring during dehydration and rehydration of Xerophyta humilis, a poikilochlorophyllous resurrection plant, and whether volatile and non‐volatile isoprenoids might be involved in desiccation tolerance. Photosynthesis declined rapidly after dehydration below 85% relative water content (RWC). Raising intercellular CO2 concentrations during desiccation suggest that the main photosynthetic limitation was photochemical, affecting energy‐dependent RuBP regeneration. Imaging fluorescence confirmed that both the number of photosystem II (PSII) functional reaction centres and their efficiency were impaired under progressive dehydration, and revealed the occurrence of heterogeneous photosynthesis during desiccation, being the basal leaf area more resistant to the stress. Full recovery in photosynthetic parameters occurred on rehydration, confirming that photosynthetic limitations were fully reversible and that no permanent damage occurred. During desiccation, zeaxanthin and lutein increased only when photosynthesis had ceased, implying that these isoprenoids do not directly scavenge reactive oxygen species, but rather protect photosynthetic membranes from damage and consequent denaturation. X. humilis was found to emit isoprene, a volatile isoprenoid that acts as a membrane strengthener in plants. Isoprene emission was stimulated by drought and peaked at 80% RWC. We surmise that isoprene and non‐volatile isoprenoids cooperate in reducing membrane damage in X. humilis, isoprene being effective when desiccation is moderate while non‐volatile isoprenoids operate when water deficit is more extreme.  相似文献   

5.
6.
Isoprene emission is related to photosynthesis but the nature of the relationship is not yet known. To explore this relationship we have examined the rate of isoprene emission, photosynthesis, and the contents of photosynthetic metabolites in leaves of velvet bean (Mucuna deeringeniana L.) and red oak (Quercus rubra L.) in response to a light-to-dark transition and to changes in air composition. Isoprene emission fell when darkness was imposed and the drop was associated with reduced amounts of ribulose-1,5-bisphosphate and ATP. The rate of isoprene emission and ATP content were reduced to the same extent by exposure to low O2 or high CO2 partial pressures. Only when O2 and CO2 were simultaneously removed from the air did the rate of isoprene emission drop without a corresponding change in ATP. The results demonstrate that when carbon is not limiting, isoprene emission is highly correlated with ATP content. When synthesis of phosphoglyceric acid is inhibited, however, carbon availability may control isoprene production. Mr. Peter Vanderveer assisted with the measurements of enzymatic metabolites. Mr. Xavier Socias is gratefully acknowledged for Rubisco preparation. This research was supported by the U.S. National Science Foundation, grant no. IBN 9105274.  相似文献   

7.
Process-based modelling of isoprene emission by oak leaves   总被引:9,自引:5,他引:4  
The emission rate of the volatile reactive compound isoprene, emitted predominantly by trees, must be known before the level of photo‐oxidants produced during summer smog can be predicted reliably. The emission is dependent on plant species and local conditions, and these dependencies must be quantified to be included in any empirical algorithm for the calculation of isoprene production. Experimental measurements of isoprene emission rates are expensive, however, and existing data are scarce and fragmentary. To overcome these difficulties, it is promising to develop a numerical model capable of precisely calculating the isoprene emission by trees for diverse ecosystems, even under changing environmental conditions. A basic process‐based biochemical isoprene emission model (BIM) has therefore been developed, which describes the enzymatic reactions in leaf chloroplasts leading to the formation of isoprene under varying environmental conditions (e.g. light intensity, temperature). Concentrations of the precursors of isoprene formation, 3‐phosphoglyceric acid and glyceraldehyde 3‐phosphate, are provided by a published light fleck photosynthesis model. Specific leaf and enzyme parameters were determined for the pedunculate oak (Quercus robur L.), so that the BIM is capable of calculating oak‐specific isoprene emission rates as influenced by the leaf temperature and light intensity. High correlation was observed between isoprene emission rates calculated by the BIM and the diurnal isoprene emission rates of leaves measured under controlled environmental conditions. The BIM was even capable of describing changes in isoprene emission caused by midday depression of net photosynthesis.  相似文献   

8.
In comparison to other bacteria Bacillus subtilis emits the volatile compound isoprene in high concentrations. Isoprene is the smallest representative of the natural product group of terpenoids. A search in the genome of B. subtilis resulted in a set of genes with yet unknown function, but putatively involved in the methylerythritol phosphate (MEP) pathway to isoprene. Further identification of these genes would give the possibility to engineer B. subtilis as a host cell for the production of terpenoids like the valuable plant-produced drugs artemisinin and paclitaxel. Conditional knock-out strains of putative genes were analyzed for the amount of isoprene emitted. Differences in isoprene emission were used to identify the function of the enzymes and of the corresponding selected genes in the MEP pathway. We give proof on a biochemical level that several of these selected genes from this species are involved in isoprene biosynthesis. This opens the possibilities to investigate the physiological function of isoprene emission and to increase the endogenous flux to the terpenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate, for the heterologous production of more complex terpenoids in B. subtilis.  相似文献   

9.
Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban–rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf‐level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO2 on isoprene emission. These are important considerations for modeling future biosphere–atmosphere interactions and for understanding tree physiological responses to climate change.  相似文献   

10.
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs) and net photosynthetic carbon fixation (Pn) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL) increased with leaf temperature with strong linear correlations for ETR (? = 0.98) and qL (? = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non‐photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary “ground‐truthing” for simulations of the large predicted increases in tropical isoprene emissions with climate warming.  相似文献   

11.
Biogenic emission of hydrocarbons plays an important role in the interactions between plants, especially trees, and the atmosphere. Among these volatile organic compounds isoprene (2-methyl-1,3-butadiene) is the predominant component emitted by many photosynthesizing leaves. Its rapid atmospheric breakdown substantially affects the oxidation potential of the atmosphere. An enzyme, isoprene synthase, extracted from leaves of European oak (Quercus robur L.) was previously found to catalyse the Mg 2+–dependent elimination of diphosphate from dimethylallyldiphosphate to form isoprene. The present paper describes the seasonal variation of this enzyme acitivity in Quercus robur (L.) leaves in 1995. The enzymatic data obtained were used to create an additional term for the isoprene emission algorithm (ISOC93). The addition of this correction term for the seasonality of isoprene synthase to the emission model improved considerably the simulation of seasonal isoprene emission rates in oaks, avoiding over- and underestimations in the current modeling approach.  相似文献   

12.
Abstract: The influence of prolonged water limitation on leaf gas exchange, isoprene emission, isoprene synthase activities and intercellular isoprene concentrations was investigated under standard conditions (30 °C leaf temperature and 1000 μmol photons m-2 s-1 PPFD) in greenhouse experiments with five-year-old pubescent oak ( Quercus pubescens Willd.) and four-year-old pedunculate oak ( Quercus robur L.) saplings. Net assimilation rates proved to be highly sensitive to moderate drought in both oak species, and were virtually zero at water potentials (Ψpd) below - 1.3 MPa in Q. robur and below - 2.5 MPa in Q. pubescens . The response of stomatal conductance to water stress was slightly less distinct. Isoprene emission was much more resistant to drought and declined significantly only at Ψpd below - 2 MPa in Q. robur and below - 3.5 MPa in Q. pubescens . Even during the most severe water stress, isoprene emission of drought-stressed saplings was still approximately one-third of the control in Q. robur and one-fifth in Q. pubescens . Isoprene synthase activities were virtually unaffected by drought stress. Re-watering led to partial recovery of leaf gas exchange and isoprene emission. Intercellular isoprene concentrations were remarkably enhanced in water-limited saplings of both oak species during the first half of the respective drought periods with maximum mean values up to ca. 16 μl l-1 isoprene for Q. pubescens and ca. 11 μl l-1 isoprene for pedunculate oak, supporting the hypothesis that isoprene serves as a short-term thermoprotective agent in isoprene-emitting plant species.  相似文献   

13.
Fruit flies of the genus Bactrocera (Diptera: Tephritidae) are one of the major economically important insects in Asia and Australia. Little attention has been given to analyses of molecular phylogenetic relationships among Bactrocera subgenera. By using mitochondrial cytochrome oxidase I gene (COI) sequences, the phylogenetic relationships among four subgenera, Asiadacus, Bactrocera, Hemigymnodacus, and Zeugodacus, were investigated. Nucleotide diversity within subgenera ranged from 11.7 to 12.4%, and the net divergence among subgenera ranged from 11.2 to 15.7%. Phylogenetic trees calculated from both maximum parsimony and neighbor-joining phylogenetic analysis methods were highly congruent in terms of tree topologies. Phylogenetic analysis of mitochondrial COI sequences suggests that tephritid fruit fly species, which attack cucurbit plants, that is, Asiadacus, Hemigymnodacus and Zeugodacus, were more closely related to each other than to fruit fly species of the subgenus Bactrocera, which attack plants of numerous families. Our data supports previous classification of Bactrocera based on morphological characters. However, the phylogenetic tree showed the polyphyletic of fruit flies in subgenus Zeugodacus. Possible causes of speciation among fruit flies species in this genus were also discussed.  相似文献   

14.
We present a physiological model of isoprene (2-methyl-1,3-butadiene) emission which considers the cost for isoprene synthesis, and the production of reductive equivalents in reactions of photosynthetic electron transport for Liquidambar styraciflua L. and for North American and European deciduous temperate Quercus species. In the model, we differentiate between leaf morphology (leaf dry mass per area, MA, g m ? 2) altering the content of enzymes of isoprene synthesis pathway per unit leaf area, and biochemical potentials of average leaf cells determining their capacity for isoprene emission. Isoprene emission rate per unit leaf area ( μ mol m ? 2 s ? 1) is calculated as the product of MA, the fraction of total electron flow used for isoprene synthesis ( ? , mol mol ? 1), the rate of photosynthetic electron transport (J) per unit leaf dry mass (Jm, μ mol g ? 1 s ? 1), and the reciprocal of the electron cost of isoprene synthesis [mol isoprene (mol electrons ? 1)]. The initial estimate of electron cost of isoprene synthesis is calculated according to the 1-deoxy- D -xylulose-5-phosphate pathway recently discovered in the chloroplasts, and is further modified to account for extra electron requirements because of photorespiration. The rate of photosynthetic electron transport is calculated by a process-based leaf photosynthesis model. A satisfactory fit to the light-dependence of isoprene emission is obtained using the light response curve of J, and a single value of ? , that is dependent on the isoprene synthase activity in the leaves. Temperature dependence of isoprene emission is obtained by combining the temperature response curves of photosynthetic electron transport, the shape of which is related to long-term temperature during leaf growth and development, and the specific activity of isoprene synthase, which is considered as essentially constant for all plants. The results of simulations demonstrate that the variety of temperature responses of isoprene emission observed within and among the species in previous studies may be explained by different optimum temperatures of J and/or limited maximum fraction of electrons used for isoprene synthesis. The model provides good fits to diurnal courses of field measurements of isoprene emission, and is also able to describe the changes in isoprene emission under stress conditions, for example, the decline in isoprene emission in water-stressed leaves.  相似文献   

15.
The Munidopsidae, one of three squat lobster families in the Galatheoidea, contains the deepest dwelling squat lobsters, with some occurring at abyssal depths. Munidopsids were formerly divided into two subfamilies: Shinkaiinae, for the unusual hydrothermal vent genus Shinkaia; and Munidopsinae for remaining taxa. Four munidopsid genera are currently recognised (Shinkaia, Leiogalathea, Galacantha and Munidopsis) but the largest genus, Munidopsis, is highly diverse morphologically, with multiple genera or subgenera currently in its synonymy. Phylogenetic studies of galatheoids focussed on high level relationships indicate that Leiogalathea is sister to other munidopsids, but the position of Shinkaia with respect to Munidopsis and Galacantha is unclear, as is the reciprocal monophyly of the latter two genera. Phylogenetic analyses of the Munidopsidae based on mitochondrial 16S and COI sequences, sampling all current genera (including the majority of the formerly recognised subgenera), indicate that the generic and former subfamily classifications do not reflect the phylogeny. Shinkaia and Galacantha clades are nested within Munidopsis rendering the genus paraphyletic and the bi-subfamily classification phylogenetically invalid. Many of the Munidopsis clades recovered, however, correspond well to formerly recognised genera or subgenera, indicating good prospects for a natural subdivision of Munidopsis.  相似文献   

16.
We evaluated the completeness and historical trends of the taxonomic knowledge of the myrmecophilous ground beetle tribe Paussini (Coleoptera, Carabidae, Paussinae). Species accumulation curves were modelled using a logistic function. Similar analyses were conducted for genera and subgenera. Although not all biogeographical regions have been equally explored, accumulation curves reached a plateau in all cases. Our models predict that about 96% of the world fauna has been already described. However, the asymptotes calculated for the Australian and Oriental species should be interpreted as false plateaus because of the lack of recent research. Similarly, patterns of genera accumulation indicate that a plateau has been reached. As a result of continued debate on the use and validity of Paussini subgenera, the accumulation curves of subgenera showed stepped patterns, with no evidence of plateaus. Thus, although relatively few species are expected to be described in the future, the species accumulation curves indicate that the taxonomic inventory is not yet complete. Differences in accumulation patterns among biogeographical regions can be used to highlight the areas where more species are expected, and hence where taxonomical efforts should be concentrated. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 330–339.  相似文献   

17.
The long‐term effect of elevated atmospheric CO2 on isoprenoid emissions from adult trees of two Mediterranean oak species (the monoterpene‐emitting Quercus ilex L. and the isoprene‐emitting Quercus pubescens Willd.) native to a high‐CO2 environment was investigated. During two consecutive years, isoprenoid emission was monitored both at branch level, measuring the actual emissions under natural conditions, and at leaf level, measuring the basal emissions under the standard conditions of 30 °C and at light intensity of 1000 µmol m?2 s?1. Long‐term exposure to high atmospheric levels of CO2 did not significantly affect the actual isoprenoid emissions. However, when leaves of plants grown in the control site were exposed for a short period to an elevated CO2 level by rapidly switching the CO2 concentration in the gas‐exchange cuvette, both isoprene and monoterpene basal emissions were clearly inhibited. These results generally confirm the inhibitory effect of elevated CO2 on isoprenoid emission. The absence of a CO2 effect on actual emissions might indicate higher leaf temperature at elevated CO2, or an interaction with multiple stresses some of which (e.g. recurrent droughts) may compensate for the CO2 effect in Mediterranean ecosystems. Under elevated CO2, isoprene emission by Q. pubescens was also uncoupled from the previous day's air temperature. In addition, pronounced daily and seasonal variations of basal emission were observed under elevated CO2 underlining that correction factors may be necessary to improve the realistic estimation of isoprene emissions with empirical algorithms in the future. A positive linear correlation of isoprenoid emission with the photosynthetic electron transport and in particular with its calculated fraction used for isoprenoid synthesis was found. The slope of this relationship was different for isoprene and monoterpenes, but did not change when plants were grown in either ambient or elevated CO2. This suggests that physiological algorithms may usefully predict isoprenoid emission also under rising CO2 levels.  相似文献   

18.
Kudzu (Pueraria lobata (Willd) Ohwi.) is a vine which forms large, monospecific stands in disturbed areas of the southeastern United States. Kudzu also emits isoprene, a hydrocarbon which can significantly affect atmospheric chemistry including reactions leading to tropospheric ozone. We have studied physiological aspects of isoprene emission from kudzu so the ecological consequences of isoprene emission can be better understood. We examined: (a) the development of isoprene emission as leaves developed, (b) the interaction between photon flux density and temperature effects on isoprene emission, (c) isoprene emission during and after water stress, and (d) the induction of isoprene emission from leaves grown at low temperature by water stress or elevated temperature. Isoprene emission under standard conditions of 1000 mol photons·m-2·s-1 and 30°C developed only after the leaf had reached full expansion, and was not complete until up to two weeks past the point of full expansion of the leaf. The effect of temperature on isoprene emission was much greater than found for other species, with a 10°C increase in temperature causing a eight-fold increase in the rate of isoprene emission. Isoprene emission from kudzu was stimulated by increases in photon flux density up to 3000 mol photons·m-2·s-1. In contrast, photosynthesis of kudzu was saturated at less than 1000 mol·m-2·s-1 photon flux density and was reduced at high temperature, so that up to 20% of the carbon fixed in photosynthesis was reemitted as isoprene gas at 1000 mol photons·m-2·s-1 and 35°C. Withholding water caused photosynthesis to decline nearly to zero after several days but had a much smaller effect on isoprene emission. Following the relief of water stress, photosynthesis recovered to the prestress level but isoprene emission increased to about five times the prestress rate. At 1000 mol photons·m-2·s-1 and 35°C as much as 67% of the carbon fixed in photosynthesis was reemitted as isoprene eight days after water stress. Leaves grown at less than 20°C did not make isoprene until an inductive treatment was given. Inductive treatments included growth at 24°C, leaf temperature of 30°C for 5 h, or witholding water from plants. With the new information on temperature and water stress effects on isoprene emission, we speculate that isoprene emission may help plants cope with stressful conditions.  相似文献   

19.
Systematic studies of Ceratitis (Tephritidae) fruit flies using molecular (i.e., COI, ND6, and period genes) and morphological (plus host-use characters) data have recently challenged the monophyly of the subgenera Ceratitis (Ceratitis) and Ceratitis (Pterandrus). In this paper, we report on the phylogenetic utility of three single-copy nuclear gene regions (two non-overlapping fragments of the carbamoylphosphate synthetase, CPS, locus of CAD, and a fragment of tango) within these taxa and investigate evolutionary relationships based on a concatenated ca. 3.4 kb data set that includes the six protein encoding gene regions. Results indicate that the CAD and tango genes provide useful phylogenetic signal within the taxa and are compatible with the previously studied genes. The two subgenera, as currently classified, are not monophyletic. Our molecular phylogenetic analyses support a revised classification in which (1) the subgenus C. (Pterandrus) comprises two lineages called A and B, (2) the C. (Pterandrus) B species should be included in C. (Ceratitis), and (3) the newly defined subgenera C. (Pterandrus) (=Pterandrus section A) and C. (Ceratitis) [=C. (Ceratitis) + C. (Pterandrus) section B] are reciprocally monophyletic.  相似文献   

20.
Two new aero-aquatic species of the genusHelicodendron are described and illustrated:H. coniferarum andH. longitubulosum spp. nov. Both belong to the ecological group of the aero-aquatic fungi which inhabit submerged litter in stagnant pools and ditches. The new species are compared with similar species (H. coniferarum withH. fuscum, H. cumbriense, H. multiseptatum andH. pinicola;H. longitubulosum withH. tubulosum andH. longisporum). In addition, ecology and substrates are recorded: WhereasH. coniferarum was isolated from pine litter submerged in oligotrophic peat bog ditches,H. longitubulosum grew on an oak leaf submerged in a eutrophic woodland pond. The presence of microconidia inH. longitubulosum is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号