共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide synthetase gene in Trichoderma virens. 总被引:1,自引:0,他引:1
Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated N(delta)-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. 相似文献
2.
3.
Gliocladium virens is a filamentous fungus formulated for the biological control of damping-off diseases of plants. Part of its antagonistic activity is due to its production of an epidithiodiketopiperazine antibiotic, gliotoxin. A relatively short period of biocontrol activity limits the use of this biocontrol agent in certain applications. This report examines the apparent transient accumulation of gliotoxin, a potential limitation in biocontrol activity.35S pulse labeling of gliotoxin indicated thatG. virens strain G20-4VIB synthesizes gliotoxin only within a short 16-h period during replicative growth. An apparent lack of gliotoxin production in later growth phases was due to the cessation of synthesis rather than an increase in gliotoxin catabolism. Media-trnafer experiments indicated that cessation of gliotoxin synthesis could not be explained by gliotoxin feedback inhibition, a diffusible inhibitor, or changing the nutritional status of the medium over a 2-h response time. These results demonstrate that the regulation of gliotoxin biosynthesis is a major determinant in the kinetics of gliotoxin appearance and focuses the need for further study on the regulation of gene expression. 相似文献
4.
对苏云金素生物合成基因簇中编码非核糖体肽合成酶基因thu2进行基因缺失插入失活的研究。用温敏型质粒pHT304-TS构建基因thu2的插入缺失质粒pEMB1434,电转化苏云金芽胞杆菌菌株CT-43后,通过抗性筛选和PCR验证得到thu2基因同源双交换基因敲除突变株CT-43-22。HPLC(高效液相色谱,High Performance Liquid Chromatography)检测发现CT-43-22没有苏云金素特征吸收峰;用pHT304构建得到含有完整thu2基因的回补质粒pEMB1435,电转化CT-43-22后得到互补重组菌CT-43-22b,发现其恢复了苏云金素的产生。显微镜观察突变株和互补重组菌均能产生正常的晶体和芽胞。thu2的基因敲除和基因互补实验证明,thu2基因为CT-43苏云金素生物合成的必需基因,但对晶体和芽胞的形成没有影响。 相似文献
5.
Trichoderma virens, an imperfect fungus, is used as a biocontrol agent to suppress plant disease caused by soilborne fungal pathogens. Antimicrobial peptides it produces include peptaibols of 11, 14, and 18 amino acids in length. These peptaibols were previously reported to be synthesized by a non-ribosomal peptide synthetase (NRPS) encoded by the Tex1 gene in strain Tv29-8. The present study examined the Tex1 homolog in a commercially relevant T. virens strain, G20. Although the gene in G20 was 99% identical in DNA sequence to Tex1 in the 15.8 kb compared, gene disruption results indicate that it is only responsible for the production of an 18-mer peptaibol, and not 11-mer and 14-mer peptaibols. Additional NRPS adenylate domains were identified in T. virens and one was found to be part of a 5-module NRPS gene. Although the multimodule gene is not needed for peptaibol synthesis, sequence comparisons suggest that two of the individual adenylate domain clones might be part of a separate peptaibol synthesis NRPS gene. The results indicate a significant diversity of NRPS genes in T. virens that is unexpected from the literature. 相似文献
6.
7.
8.
Classical models of population dynamics predict that with increasing initial population densities the per capita growth will diminish. Observations over a broad range of initial densities with a wild-type and a genetically engineered strain of the filamentous fungus, Trichoderma virens (Arx), in soil and autoclaved soil differed from these predictions. The per capita growth response of T. virens in vitro was found to be density dependent on potato dextrose agar, but density independent on water agar. Further experiments with a defined, carbon-free medium (Vogel's medium) and, with the same medium containing sucrose, indicated that density dependent per capita growth occurred in the nutrient-rich medium but not the oligotrophic medium. This hypothesis was tested and supported experimentally through observation of density dependent per capita growth after adding nutrients to autoclaved soil. Development of better models of population dynamics will be important to predict successfully the likelihood and extent of establishment after field release of microorganims. 相似文献
9.
木霉菌(Trichoderma spp.)是一类重要的植病生防因子,该菌产生的包括几丁质酶在内的细胞壁降解酶,在木霉重寄生中起重要作用。该文采用正交试验方法研究了葡萄糖浓度、铵盐浓度、胶状几丁质三个因素及其交互作用对绿木霉菌(Trichoderma,Virens)几丁质酶分泌水平的影响,结果表明,低浓度葡萄糖(0.1%)和低浓度铵盐(10mmol/L)有利于几丁质酶的分泌,几丁质酶活性最高可达到6.83U;高浓度葡萄糖对几丁质酶的分泌有明显抑制作用,在3%葡萄精浓度条件下几丁质酶的分泌水平均小于0.45U,在高铵盐浓度(100mmo/L)时,几丁质酶分泌水平在0.59~1.29U;胶状几丁质的添加可在术霉菌丝体生长早期(培养前72h)诱导几丁质酶的分泌;葡萄糖与铵盐的交互作用能够显著提高几丁质酶的分泌水平。 相似文献
10.
11.
非核糖体肽是微生物体内一类具有天然生物活性的次生代谢物,由非核糖体肽合成酶催化生成。而AHA2474和AHA2476是嗜水气单胞菌ATCC7966中两个编码非核糖体肽合成酶的基因。利用同源重组技术分别构建了AHA2474、AHA2476基因缺失株,并对其生理特性进行测定。结果表明,与野生株相比,缺失株的溶血性和胞外蛋白酶活性均显著增强,而产铁能力明显减弱;在缺铁条件下,缺失株的生长能力较弱,补充铁离子后又能恢复生长。同时在过氧化氢应激下ΔAHA2474菌株具有更大的耐受性。以上研究结果提示AHA2474和AHA2476基因可能通过影响铁离子动态平衡过程来调控该菌的生理特性,同时也表明非核糖体肽在该菌致病性方面起作用,为探究该菌的致病机制及防治策略提供理论依据。 相似文献
12.
Antagonistic potential of Gliocladium virens and Trichoderma longibrachiatum to phytopathogenic fungi 总被引:3,自引:0,他引:3
Three isolates of Gliocladium virens (G1, G2 and G3) and two of Trichoderma longibrachiatum (T1 and T2) were screened against isolates of three soilborne plant pathogens namely Rhizoctonia solani, Sclerotium rolfsii and Pythium aphanidermatum. G. virens exhibited stronger hyperparasitism and wider biological spectrum than T. longibrachiatum. Further, similarities as well as variation was observed in the ability of the various isolates to invade the test pathogens in dual culture. For the hyperparasites, acidic pH range (5.0 to 5.5) favoured both growth and spore germination. The hyperparasites made direct contact with the pathogens followed by varied modes of attack invariably leading to cell disruption. Antagonists, G1 and G3 revealed strong antibiosis while T2 showed moderate effect. All the isolates produced enhanced levels of lytic enzymes adaptively and there were marked differences among them. However, no correlation was observed between these attributes and the hyperparasitic potential of the various isolates in dual culture. The relevance and the role of enzymes and toxic metabolite(s) in the antagonism of G. virens and T. longibrachiatum to these pathogens are discussed. 相似文献
13.
14.
Antonia Gallo Kenneth S. Bruno Michele Solfrizzo Giancarlo Perrone Giuseppina Mulè Angelo Visconti Scott E. Baker 《Applied and environmental microbiology》2012,78(23):8208-8218
Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium species, is composed of a dihydroisocoumarin ring linked to phenylalanine, and its biosynthetic pathway has not yet been completely elucidated. Most of the knowledge regarding the genetic and enzymatic aspects of OTA biosynthesis has been elucidated in Penicillium species. In Aspergillus species, only pks genes involved in the initial steps of the pathway have been partially characterized. In our study, the inactivation of a gene encoding a nonribosomal peptide synthetase (NRPS) in OTA-producing A. carbonarius ITEM 5010 has eliminated the ability of this fungus to produce OTA. This is the first report on the involvement of an nrps gene product in OTA biosynthetic pathway in an Aspergillus species. The absence of OTA and ochratoxin α, the isocoumaric derivative of OTA, and the concomitant increase of ochratoxin β, the dechloro analog of ochratoxin α, were observed in the liquid culture of transformed strain. The data provide the first evidence that the enzymatic step adding phenylalanine to polyketide dihydroisocoumarin precedes the chlorination step to form OTA in A. carbonarius and that ochratoxin α is a product of hydrolysis of OTA, giving an interesting new insight into the biosynthetic pathway of the toxin. 相似文献
15.
Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens 总被引:2,自引:0,他引:2
Emani C Garcia JM Lopata-Finch E Pozo MJ Uribe P Kim DJ Sunilkumar G Cook DR Kenerley CM Rathore KS 《Plant biotechnology journal》2003,1(5):321-336
Mycoparasitic fungi are proving to be rich sources of antifungal genes that can be utilized to genetically engineer important crops for resistance against fungal pathogens. We have transformed cotton and tobacco plants with a cDNA clone encoding a 42 kDa endochitinase from the mycoparasitic fungus, Trichoderma virens. Plants from 82 independently transformed callus lines of cotton were regenerated and analysed for transgene expression. Several primary transformants were identified with endochitinase activities that were significantly higher than the control values. Transgene integration and expression was confirmed by Southern and Northern blot analyses, respectively. The transgenic endochitinase activities were examined in the leaves of transgenic tobacco as well as in the leaves, roots, hypocotyls and seeds of transgenic cotton. Transgenic plants with elevated endochitinase activities also showed the expected 42 kDa endochitinase band in fluorescence, gel-based assays performed with the leaf extracts in both species. Homozygous T2 plants of the high endochitinase-expressing cotton lines were tested for disease resistance against a soil-borne pathogen, Rhizoctonia solani and a foliar pathogen, Alternaria alternata. Transgenic cotton plants showed significant resistance to both pathogens. 相似文献
16.
Michael Y. Aksenov Marina V. Aksenova John M. Carney D. Allan Buterfield 《Free radical research》1997,27(3):267-281
β-Amyloid peptide (Aβ), the main constituent of senile plaques and diffuse amyloid deposits in Alzheimer's diseased brain, was shown to initiate the development of oxidative stress in neuronal cell cultures. Toxic lots of Aβ form free radical species in aqueous solution. It was proposed that Aβ-derived free radicals can directly damage cell proteins via oxidative modification. Recently we reported that synthetic Aβ can interact with glutamine synthetase (GS) and induce inactivation of this enzyme. In the present study we present the evidence that toxic Aβ(25-35) induces the oxidation of pure GS in vitro. It was found that inactivation of GS by Aβ, as well as the oxidation of GS by metal-catalyzed oxidation system, is accompanied by an increase of protein carbonyl content. As it was reported previously by our laboratory, radicalization of Aβ is not iron or peroxide-dependent. Our present observations consistently show that toxic Aβ does not need iron or peroxide to oxidize GS. However, treatment of GS with the peptide, iron and peroxide together significantly stimulates the protein carbonyl formation. Here we report also that Aβ(25-35) induces carbonyl formation in BSA. Our results demonstrate that P-peptide, as well as other free radical generators, induces carbonyl formation when brought into contact with different proteins. 相似文献
17.
为了探讨绿木霉与褐环乳牛肝菌的互作机理,在体外共培养条件下,采用光学显微镜和扫描电镜对二者生长重叠部分进行体外观察,发现二者生长无相互影响,在营养生长方面几乎不存在竞争关系。为进一步揭示绿木霉与褐环乳牛肝菌的互作机制,采用体外诱导和生物化学等方法,向褐环乳牛肝菌发酵液中加入灭活绿木霉菌丝诱导物,每天对发酵液中的多酚氧化酶、几丁质酶、漆酶和中性蛋白酶等酶活性进行检测。试验结果表明,绿木霉诱导褐环乳牛肝菌产漆酶能力最强;在整个共培养过程中,多酚氧化酶和漆酶活力始终处于较高水平,在诱导培养第6天,这两种酶活性升至最高,分别达到25.2U/mL和1 580U/mL;灭活绿木霉菌丝对褐环乳牛肝菌几丁质酶的诱导具有“瞬时性”,在诱导培养第2天即检测到较高的几丁质酶活性;中性蛋白酶的活性变化基本上呈先上升后下降的规律,且能增大褐环乳牛肝菌中性蛋白酶的固有产量,形成“叠加效果”。综上所述,绿木霉对褐环乳牛肝菌几乎不存在营养竞争关系,但其灭活菌丝体对褐环乳牛肝菌发酵液的多种酶活性存在诱导增效作用。 相似文献
18.
Azaliza Safarida Wasli Madihah Md. Salleh Suraini Abd-Aziz Osman Hassan Nor Muhammad Mahadi 《Biotechnology and Bioprocess Engineering》2009,14(6):781-787
Medium development for chitinase production by Trichoderma virens was first carried out using conventional method of one-factor-at-a-time. The medium was further optimized using Central Composite Design in which response surface was generated later from the derived model. An experimental design of four variables including various initial pH values, chitin, ammonium sulphate, and methanol concentrations were created using Design Expert® Software, Version 6.0. The design consists of 30 experiments, which include 6 replicates at center points. The optimal value for each variable are 3.0 g/L, chitin; 0.1 g/L, ammonium sulphate; 0.4% (v/v), methanol; and initial pH, 4.0 with predicted chitinase activity of 0.1495 U/mL. These predicted parameters were tested in the laboratory and the final chitinase activity obtained was 0.1471 U/mL, which is almost reaching the predicted value. The optimal medium design showed an improvement of chitinase activity of 80.9% compared to activity obtained from the original Absidia medium composition. 相似文献
19.
AIMS: Using limited digital image sampling, a model of fungal growth in soil that considers both hyphal production and lysis was constructed for two strains of Trichoderma virens over a range of four temperatures. MATERIALS AND METHODS: A growth model was developed by fitting the radial cross sectional data with a modified form of the Ratkowsky equation to determine maximum growth rate and a modified Arrhenius equation to determine maximal rate of decrease in area covered by mycelia. The parameters obtained from a combined equation were then verified by using the data obtained from the whole colony to determine the appropriateness of the model. CONCLUSIONS: Using a limited data set and a combination of the Ratkowsky and Arrhenius equations, the mycelial coverage of the T. virens colony was determined, relating microscopic hyphal growth to macroscopic colony growth. This model was sufficiently robust to predict growth across four temperatures for a genetically modified and wild-type strain of T. virens. SIGNIFICANCE AND IMPACT OF STUDY: By using simple assumptions for the increase and eventual decline in fungal growth on a resource-limited medium, this model constructs an initial framework onto which additional parameters such as nutrient consumption could be incorporated for prediction of fungal growth. 相似文献
20.
Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase 总被引:5,自引:0,他引:5
Wiest A Grzegorski D Xu BW Goulard C Rebuffat S Ebbole DJ Bodo B Kenerley C 《The Journal of biological chemistry》2002,277(23):20862-20868
The fungus Trichoderma virens is a ubiquitous soil saprophyte that has been applied as a biological control agent to protect plants from fungal pathogens. One mechanism of biocontrol is mycoparasitism, and T. virens produces antifungal compounds to assist in killing its fungal targets. Peptide synthetases produce a wide variety of peptide secondary metabolites in bacteria and fungi. Many of these are known to possess antibiotic activities. Peptaibols form a class of antibiotics known for their high alpha-aminoisobutyric acid content and their synthesis as a mixture of isoforms ranging from 7 to 20 amino acids in length. Here we report preliminary characterization of a 62.8-kb continuous open reading frame encoding a peptaibol synthetase from T. virens. The predicted protein structure consists of 18 peptide synthetase modules with additional modifying domains at the N- and C-termini. T. virens was shown to produce a mixture of peptaibols, with the largest peptides being 18 residues. Mutation of the gene eliminated production of all peptaibol isoforms. Identification of the gene responsible for peptaibol production will facilitate studies of the structure and function of peptaibol antibiotics and their contribution to biocontrol activity. 相似文献