首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Visual motion information from dynamic environments is important in multisensory temporal perception. However, it is unclear how visual motion information influences the integration of multisensory temporal perceptions. We investigated whether visual apparent motion affects audiovisual temporal perception. Visual apparent motion is a phenomenon in which two flashes presented in sequence in different positions are perceived as continuous motion. Across three experiments, participants performed temporal order judgment (TOJ) tasks. Experiment 1 was a TOJ task conducted in order to assess audiovisual simultaneity during perception of apparent motion. The results showed that the point of subjective simultaneity (PSS) was shifted toward a sound-lead stimulus, and the just noticeable difference (JND) was reduced compared with a normal TOJ task with a single flash. This indicates that visual apparent motion affects audiovisual simultaneity and improves temporal discrimination in audiovisual processing. Experiment 2 was a TOJ task conducted in order to remove the influence of the amount of flash stimulation from Experiment 1. The PSS and JND during perception of apparent motion were almost identical to those in Experiment 1, but differed from those for successive perception when long temporal intervals were included between two flashes without motion. This showed that the result obtained under the apparent motion condition was unaffected by the amount of flash stimulation. Because apparent motion was produced by a constant interval between two flashes, the results may be accounted for by specific prediction. In Experiment 3, we eliminated the influence of prediction by randomizing the intervals between the two flashes. However, the PSS and JND did not differ from those in Experiment 1. It became clear that the results obtained for the perception of visual apparent motion were not attributable to prediction. Our findings suggest that visual apparent motion changes temporal simultaneity perception and improves temporal discrimination in audiovisual processing.  相似文献   

2.
This paper reports an attempt to measure the dependency of the visual temporal frame on cortical rhythms. As a probe, we used two short flashes of a point light source separated in time by a variable interstimulus interval (ISI). Subjects were asked to judge whether the two short flashes were perceived as simultaneous or as sequential. The onset of the light flashes was triggered at four chosen phases of the occipital alpha rhythm of the viewing subject, and the probabilities of perceived simultaneity at various ISI's were obtained. Data from three experimental subjects show that the triggering phase produced a significant shift along the ISI-axis, thus changing the probability of perceived simultaneity. The magnitude of this shift varied substantially across subjects. These results show that, although cortical rhythms correlate with perceptual framing as previously reported (Varela et al., 1981), the nature of this dependency is different than previously suggested: a visual temporal frame seems to be a local event at the cortex, and not a global coordination uniformly reflected in the alpha rhythm.  相似文献   

3.
Enhancement and phototransduction in the ventral eye of limulus   总被引:9,自引:8,他引:1       下载免费PDF全文
Limulus ventral photoreceptors were voltage clamped to the resting (dark) potential and stimulated by a 20-ms test flash and a 1-s conditioning flash. At a constant level of adaptation, we measured the response to the test flash given in the dark (control) and the incremental response produced when the test flash occurred within the duration of the conditioning flash. The incremental response is defined as the response to the conditioning and test flashes minus the response to the conditioning flash given alone. When the test flash was presented within 100 ms after the onset of the conditioning flash we observed that: (a) for dim conditioning flashes the incremental response equaled the control response; (b) for intermediate intensity conditioning flashes the incremental response was greater than the control response (we refer to this as enhancement); (c) for high intensity conditioning flashes the incremental response nearly equaled the control response. Using 10-μm diam spots of illumnination, we stimulated two spatially separate regions of one photoreceptor. When the test flash and the conditioning flash were presented to the same region, enhancement was present; but when the flashes were applied to separate regions, enhancement was nearly absent. This result indicates that enhancement is localized to the region of illumination. We discuss mechanisms that may account for enhancement.  相似文献   

4.

Background

The sound-induced flash illusion is an auditory-visual illusion – when a single flash is presented along with two or more beeps, observers report seeing two or more flashes. Previous research has shown that the illusion gradually disappears as the temporal delay between auditory and visual stimuli increases, suggesting that the illusion is consistent with existing temporal rules of neural activation in the superior colliculus to multisensory stimuli. However little is known about the effect of spatial incongruence, and whether the illusion follows the corresponding spatial rule. If the illusion occurs less strongly when auditory and visual stimuli are separated, then integrative processes supporting the illusion must be strongly dependant on spatial congruence. In this case, the illusion would be consistent with both the spatial and temporal rules describing response properties of multisensory neurons in the superior colliculus.

Methodology/Principal Findings

The main aim of this study was to investigate the importance of spatial congruence in the flash-beep illusion. Selected combinations of one to four short flashes and zero to four short 3.5 KHz tones were presented. Observers were asked to count the number of flashes they saw. After replication of the basic illusion using centrally-presented stimuli, the auditory and visual components of the illusion stimuli were presented either both 10 degrees to the left or right of fixation (spatially congruent) or on opposite (spatially incongruent) sides, for a total separation of 20 degrees.

Conclusions/Significance

The sound-induced flash fission illusion was successfully replicated. However, when the sources of the auditory and visual stimuli were spatially separated, perception of the illusion was unaffected, suggesting that the “spatial rule” does not extend to describing behavioural responses in this illusion. We also find no evidence for an associated “fusion” illusion reportedly occurring when multiple flashes are accompanied by a single beep.  相似文献   

5.
Alais D  Apthorp D  Karmann A  Cass J 《PloS one》2011,6(12):e28675
Temporal integration in the visual system causes fast-moving objects to leave oriented 'motion streaks' in their wake, which could be used to facilitate motion direction perception. Temporal integration is thought to occur over ≈100 ms in early cortex, although this has never been tested for motion streaks. Here we compare the ability of fast-moving ('streaky') and slow-moving fields of dots to mask briefly flashed gratings either parallel or orthogonal to the motion trajectory. Gratings were presented at various asynchronies relative to motion onset (from -200 to +700 ms) to sample the time-course of the accumulating streaks. Predictions were that masking would be strongest for the fast parallel condition, and would be weak at early asynchronies and strengthen over time as integration rendered the translating dots more streaky and grating-like. The asynchrony where the masking function reached a plateau would correspond to the temporal integration period. As expected, fast-moving dots caused greater masking of parallel gratings than orthogonal gratings, and slow motion produced only modest masking of either grating orientation. Masking strength in the fast, parallel condition increased with time and reached a plateau after 77 ms, providing an estimate of the temporal integration period for mechanisms encoding motion streaks. Interestingly, the greater masking by fast motion of parallel compared with orthogonal gratings first reached significance at 48 ms before motion onset, indicating an effect of backward masking by motion streaks.  相似文献   

6.
Temporal recalibration of cross-modal synchrony has been proposed as a mechanism to compensate for timing differences between sensory modalities. However, far from the rich complexity of everyday life sensory environments, most studies to date have examined recalibration on isolated cross-modal pairings. Here, we hypothesize that selective attention might provide an effective filter to help resolve which stimuli are selected when multiple events compete for recalibration. We addressed this question by testing audio-visual recalibration following an adaptation phase where two opposing audio-visual asynchronies were present. The direction of voluntary visual attention, and therefore to one of the two possible asynchronies (flash leading or flash lagging), was manipulated using colour as a selection criterion. We found a shift in the point of subjective audio-visual simultaneity as a function of whether the observer had focused attention to audio-then-flash or to flash-then-audio groupings during the adaptation phase. A baseline adaptation condition revealed that this effect of endogenous attention was only effective toward the lagging flash. This hints at the role of exogenous capture and/or additional endogenous effects producing an asymmetry toward the leading flash. We conclude that selective attention helps promote selected audio-visual pairings to be combined and subsequently adjusted in time but, stimulus organization exerts a strong impact on recalibration. We tentatively hypothesize that the resolution of recalibration in complex scenarios involves the orchestration of top-down selection mechanisms and stimulus-driven processes.  相似文献   

7.

Background

Perceived spatial intervals between successive flashes can be distorted by varying the temporal intervals between them (the “tau effect”). A previous study showed that a tau effect for visual flashes could be induced when they were accompanied by auditory beeps with varied temporal intervals (an audiovisual tau effect).

Methodology/Principal Findings

We conducted two experiments to investigate whether the audiovisual tau effect occurs in infancy. Forty-eight infants aged 5–8 months took part in this study. In Experiment 1, infants were familiarized with audiovisual stimuli consisting of three pairs of two flashes and three beeps. The onsets of the first and third pairs of flashes were respectively matched to those of the first and third beeps. The onset of the second pair of flashes was separated from that of the second beep by 150 ms. Following the familiarization phase, infants were exposed to a test stimulus composed of two vertical arrays of three static flashes with different spatial intervals. We hypothesized that if the audiovisual tau effect occurred in infancy then infants would preferentially look at the flash array with spatial intervals that would be expected to be different from the perceived spatial intervals between flashes they were exposed to in the familiarization phase. The results of Experiment 1 supported this hypothesis. In Experiment 2, the first and third beeps were removed from the familiarization stimuli, resulting in the disappearance of the audiovisual tau effect. This indicates that the modulation of temporal intervals among flashes by beeps was essential for the audiovisual tau effect to occur (Experiment 2).

Conclusions/Significance

These results suggest that the cross-modal processing that underlies the audiovisual tau effect occurs even in early infancy. In particular, the results indicate that audiovisual modulation of temporal intervals emerges by 5–8 months of age.  相似文献   

8.
The kinetics of the fluorescence yield phi of chlorophyll a in Chlorella pyrenoidosa were studied under anaerobic conditions in the time range from 50 mus to several minutes after short (t 1/2 = 30 ns or 5 mus) saturating flashes. The fluorescence yield "in the dark" increased from phi = 1 at the beginning to phi approximately 5 in about 3 h when single flashes separated by dark intervals of about 3 min were given. After one saturating flash, phi increased to a maximum value (4-5) at 50 mus, then phi decreased to about 3 with a half time of about 10 ms and to the initial value with a half time of about 2 s. When two flashes separated by 0.2 s were given, the first phase of the decrease after the second flash occurred within 2 ms. After one flash given at high initial fluorescence yield, the 10-ms decay was followed by a 10 s increase to the initial value. After the two flashes 0.2 s apart, the rapid decay was not followed by a slow increase. These and other experiments provided additional evidence for and extend an earlier hypothesis concerning the acceptor complex of Photosystem II (Bouges-Bocquet, B. (1973) Biochim. Biophys. Acta 314, 250-256; Velthuys, B. R. and Amesz. J. (1974) Biochim. Biophys. Acta 333, 85-94): reaction center 2 contains an acceptor complex QR consisting of an electron-transferring primary acceptor molecule Q, and a secondary electron acceptor R, which can accept two electrons in succession, but transfers two electrons simultaneously to a molecule of the tertiary acceptor pool, containing plastoquinone (A). Furthermore, the kinetics indicate that 2 reactions centers of System I, excited by a short flash, cooperate directly or indirectly in oxidizing a plastohydroquinone molecule (A2-). If initially all components between photoreaction 1 and 2 are in the reduced state the following sequence of reactions occurs after a flash has oxidised A2- via System I: Q-R2- + A leads to Q-R + A2- leads to QR- + A2-. During anaerobiosis two slow reactions manifest themselves: the reduction of R (and A) within 1 s, presumably by an endogenous electron donor D1, and the reduction of Q in about 10 s when R is in the state R- and A in the state A2-. An endogenous electron donor, D2, and Q- complete in reducing the photooxidized donor complex of System II in reactions with half times of the order of 1 s.  相似文献   

9.
The present study examined age-related differences in multisensory integration and the effect of spatial disparity on the sound-induced flash illusion—-an illusion used in previous research to assess age-related differences in multisensory integration. Prior to participation in the study, both younger and older participants demonstrated their ability to detect 1–2 visual flashes and 1–2 auditory beep presented unimodally. After passing the pre-test, participants were then presented 1–2 flashes paired with 0–2 beeps that originated from one of five speakers positioned equidistantly 100cm from the participant. One speaker was positioned directly below the screen, two speakers were positioned 50cm to the left and right from the center of the screen, and two more speakers positioned to the left and right 100cm from the center of the screen. Participants were told to report the number of flashes presented and to ignore the beeps. Both age groups showed a significant effect of the beeps on the perceived number of flashes. However, neither younger nor older individuals showed any significant effect of spatial disparity on the sound-induced flash illusion. The presence of a congruent number of beeps increased accuracy for both older and younger individuals. Reaction time data was also analyzed. As expected, older individuals showed significantly longer reaction times when compared to younger individuals. In addition, both older and younger individuals showed a significant increase in reaction time for fusion trials, where two flashes and one beep are perceived as a single flash, as compared to congruent single flash trials. This increase in reaction time was not found for fission trials, where one flash and two beeps were perceived as two flashes. This suggests that processing may differ for the two forms for fission as compared to fusion illusions.  相似文献   

10.
The notion of the temporal window of integration, when applied in a multisensory context, refers to the breadth of the interval across which the brain perceives two stimuli from different sensory modalities as synchronous. It maintains a unitary perception of multisensory events despite physical and biophysical timing differences between the senses. The boundaries of the window can be influenced by attention and past sensory experience. Here we examined whether task demands could also influence the multisensory temporal window of integration. We varied the stimulus onset asynchrony between simple, short-lasting auditory and visual stimuli while participants performed two tasks in separate blocks: a temporal order judgment task that required the discrimination of subtle auditory-visual asynchronies, and a reaction time task to the first incoming stimulus irrespective of its sensory modality. We defined the temporal window of integration as the range of stimulus onset asynchronies where performance was below 75% in the temporal order judgment task, as well as the range of stimulus onset asynchronies where responses showed multisensory facilitation (race model violation) in the reaction time task. In 5 of 11 participants, we observed audio-visual stimulus onset asynchronies where reaction time was significantly accelerated (indicating successful integration in this task) while performance was accurate in the temporal order judgment task (indicating successful segregation in that task). This dissociation suggests that in some participants, the boundaries of the temporal window of integration can adaptively recalibrate in order to optimize performance according to specific task demands.  相似文献   

11.
It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well within 100 ms after image onset, and that this separation is processed differently depending on where in the visual field the stimulus is presented. Seven right-handed males participated in a face affect recognition experiment in which they viewed happy, fearful and neutral faces. Blocks of images were shown either at the center or in one of the four quadrants of the visual field. For centrally presented faces, the emotions were separated fast, first in the right superior temporal sulcus (STS; 35–48 ms), followed by the right amygdala (57–64 ms) and medial pre-frontal cortex (83–96 ms). For faces presented in the periphery, the emotions were separated first in the ipsilateral amygdala and contralateral STS. We conclude that amygdala and STS likely play a different role in early visual processing, recruiting distinct neural networks for action: the amygdala alerts sub-cortical centers for appropriate autonomic system response for fight or flight decisions, while the STS facilitates more cognitive appraisal of situations and links appropriate cortical sites together. It is then likely that different problems may arise when either network fails to initiate or function properly.  相似文献   

12.
We address the following question: Is there a difference (D) between the amount of time for auditory and visual stimuli to be perceived? On each of 1000 trials, observers were presented with a light-sound pair, separated by a stimulus onset asynchrony (SOA) between -250 ms (sound first) and +250 ms. Observers indicated if the light-sound pair came on simultaneously by pressing one of two (yes or no) keys. The SOA most likely to yield affirmative responses was defined as the point of subjective simultaneity (PSS). PSS values were between -21 ms (i.e. sound 21 ms before light) and +150 ms. Evidence is presented that each PSS is observer specific. In a second experiment, each observer was tested using two observer-stimulus distances. The resultant PSS values are highly correlated (r = 0.954, p = 0.003), suggesting that each observer''s PSS is stable. PSS values were significantly affected by observer-stimulus distance, suggesting that observers do not take account of changes in distance on the resultant difference in arrival times of light and sound. The difference RTd in simple reaction time to single visual and auditory stimuli was also estimated; no evidence that RTd is observer specific or stable was found. The implications of these findings for the perception of multisensory stimuli are discussed.  相似文献   

13.
The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus.  相似文献   

14.
The simultaneity of signals from different senses—such as vision and audition—is a useful cue for determining whether those signals arose from one environmental source or from more than one. To understand better the sensory mechanisms for assessing simultaneity, we measured the discrimination thresholds for time intervals marked by auditory, visual or auditory–visual stimuli, as a function of the base interval. For all conditions, both unimodal and cross-modal, the thresholds followed a characteristic ‘dipper function’ in which the lowest thresholds occurred when discriminating against a non-zero interval. The base interval yielding the lowest threshold was roughly equal to the threshold for discriminating asynchronous from synchronous presentations. Those lowest thresholds occurred at approximately 5, 15 and 75 ms for auditory, visual and auditory–visual stimuli, respectively. Thus, the mechanisms mediating performance with cross-modal stimuli are considerably slower than the mechanisms mediating performance within a particular sense. We developed a simple model with temporal filters of different time constants and showed that the model produces discrimination functions similar to the ones we observed in humans. Both for processing within a single sense, and for processing across senses, temporal perception is affected by the properties of temporal filters, the outputs of which are used to estimate time offsets, correlations between signals, and more.  相似文献   

15.
North American Photinus fireflies use bioluminescent flashes to communicate an individual’s species and sex, and to attract potential mates. A female firefly responds to a male firefly’s courtship flash with her own species-specific flash. We used a photic stimulator to produce male-like species-specific P. carolinus LED courtship flashes. These evoked species-specific response flashes from a female. The female’s flashes were preceded by a flash gesture comprising a sequence of abdominal postural adjustments (pitch, roll, and yaw). These gestures changed her lantern’s orientation which, at rest, was downward towards the substrate. Our results demonstrate that these gestures mediate a lateralization of the female’s response flashes towards the direction of the stimulating LED. That is, she directs her response to the left of midline when stimuli are presented from her left, and similarly, she directs her response to the right of midline when stimuli are presented from her right. The directional aspect of the flash gesture adds a new perspective to the complexity of the behaviors associated with flash communication in fireflies. Lateralization of the flash gesture suggests that the female’s visual system processes information about the location of male’s flashes as well as their temporal pattern.  相似文献   

16.
Ted Mar  John Brebner  Guy Roy 《BBA》1975,376(2):345-353
Induction curves of the delayed light emission in spinach chloroplasts were studied by measuring the decay kinetics after each flash of light. This study differs from previous measurements of the induction curves where only the intensities at one set time after each flash of light were recorded. From the decay kinetics after each flash of light, the induction curves of the delayed light emission measured 2 ms after a flash of light were separated into two components: one component due to the last flash only and one component due to all previous flashes before the last one. On comparing the delayed light induction curves of the two components with the fluorescence induction curves in chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and in chloroplasts treated with hydroxylamine and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the component due to the last flash only is found to be dependent on the concentration of open reaction centers and the component due to all previous flashes except the last is dependent on the concentration of closed reaction centers. This implies that the yield of the fast decaying component of the delayed light emission is dependent on the concentration of open reaction centers and the yield of the slow decaying component is dependent on the concentration of closed reaction centers.  相似文献   

17.
Parallel processing of multiple sensory stimuli is critical for efficient, successful interaction with the environment. An experimental approach to studying parallel processing in sensorimotor integration is to examine reaction times to multiple copies of the same stimulus. Reaction times to bilateral copies of light flashes are faster than to single, unilateral light flashes. These faster responses may be due to 'statistical facilitation' between independent processing streams engaged by the two copies of the light flash. On some trials, however, reaction times are faster than predicted by statistical facilitation. This indicates that a neural 'coactivation' of the two processing streams must have occurred. Here we use fMRI to investigate the neural locus of this coactivation. Subjects responded manually to the detection of unilateral light flashes presented to the left or right visual hemifield, and to the detection of bilateral light flashes. We compared the bilateral trials where subjects' reaction times exceeded the limit predicted by statistical facilitation to bilateral trials that did not exceed the limit. Activity in the right temporo-parietal junction was higher in those bilateral trials that showed coactivation than in those that did not. These results suggest the neural coactivation observed in visuomotor integration occurs at a cognitive rather than sensory or motor stage of processing.  相似文献   

18.
The response properties of jittery movement fibers (JMF) in the crayfish optic tract reacting to a non-moving temporally patterned light were analyzed. The JMFs usually show no response during the regular flickering of stationary light with a flash duration of less than 50 msec when the stimulus frequency is between 4 and 20 per second; however they do respond when the flickering stops if a certain number of flashes have been given. The response appears about 50 msec after the first missing flash, i.e., the latency of the response after the last flash of the train changed from 100 to 300 msec. Thus, the “off” response at the end of the flicker is entrained to the stimulus repetition interval and locked onto the time of the first missing flash. The response of a sustaining fiber to an identical stimulus has quite different features as illustrated in Fig. 2. Some of the fibers show responses to the beginning part of the flicker but not necessarily to each flash, and habituate after several flashes. When a single flash longer than 250 msec is given, the fiber shows an “off” response with about 50 msec latency, as it does to sustained light. Some fibers show a double burst of “off” discharge to single flashes; the first at 50 msec is followed after 120 msec by the second one. However, when the flash duration is between 250 and 50 msec, a single flash elicits little or no response. The latency of the “off” response is as much as 300 msec for short single flashes less than 50 msec. An “on” response to flashes of light is observed when the inter-stimulus interval is more than 5 sec. The responses to the beginning part of flicker train are not simply locked to the just preceding flash except the “on” response to the very first one, but they can be the long latency responses to the flash before that. This response is modified in latency by the succeeding flashes in flicker trains and becomes entrained to the missing flash. Four types of entrainment are classified on the basis of the change in latency from the missing flash with regard to the number of flashes in a train. In most cases, 10 flashes are sufficient to entrain the response to the first missing flash. Non-resposiveness, i.e., habituation, during a regular flicker, may be due to an active inhibitory process, initiated by each succeeding light pulse. The response to the missing flash, therefore results from a disinhibited modified response to the last flash. Some JMFs continue to respond to the flicker even after a considerable number of flashes but only when the repetition interval is about 120 msec corresponding well to the interval of the double burst “off” discharge, thus the JMF has a resonant frequency of about 8 Hz. The JMFs appear to be acting as an irregularity detector in temporal sequence.  相似文献   

19.
Steven W. McCauley  R. H. Ruby 《BBA》1981,638(2):268-274
We have studied the delayed fluorescence in spinach chloroplasts produced 0.5 ms after each of a pair of (sub)-microsecond flashes. We observe an increase in the delayed fluorescence from the second flash relative to that produced by the first. This increase is proportional to the product of the first and second flash irradiances, appearing as an I2 dependence if both flashes are increased together. The enhancement is observable at very weak flash levels (roughly 1 photon absorbed/100 PS II centers). If the irradiance of the first flash is increased, but the irradiance of the second held constant, the delayed fluorescence from the second flash is observed to increase, but then to saturate well below the first flash irradiance at which the delayed fluorescence from the first flash itself saturates. For most experiments, the dark time between flashes was 30 ms. If the dark time is varied, the enhancement changes, reaching a half-maximal value for a dark time of approx. 300 μs. The enhancement is stopped by hydroxylamine, but not by gramicidin, valinomycin, DCMU, or mild heating. These experiments are consistent with the notion that there are two different types of Photosystem II centers if we assume that only one type is responsible for the induction we see and has an optical cross-section about 4-times the size of the other type of center.  相似文献   

20.
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants’ SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号