首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flooding can be an important control of nitrogen (N) biogeochemistry in wetland ecosystems. In North American prairie marshes, spring flooding is a dominant feature of the physical environment that increases emergent plant production and could influence N cycling. I investigated how spring flooding affects N availability and plant N utilization in whitetop (Scolochloa festucacea) marshes in Manitoba, Canada by comparing experimentally spring-flooded marsh inside an impoundment with adjacent nonflooded marsh. The spring-flooded marsh had net N mineralization rates up to 4 times greater than nonflooded marsh. Total growing season net N mineralization was 124 kg N ha–1 in the spring-flooded marsh compared with 62 kg N ha–1 in the nonflooded marsh. Summer water level drawdown in the spring-flooded marsh decreased net N mineralization rates. Net nitrification rates increased in the nonflooded marsh following a lowering of the water table during mid summer. Growing season net nitrification was 33 kg N ha–1 in the nonflooded marsh but < 1 kg N ha–1 in the spring-flooded marsh. Added NO3 –1 induced nitrate reductase (NRA) activity in whitetop grown in pot culture. Field-collected plants showed higher NRA in the nonflooded marsh. Nitrate comprised 40% of total plant N uptake in the nonflooded marsh but <1% of total N uptake in the spring-flooded marsh. Higher plant N demand caused by higher whitetop production in the spring-flooded marsh approximately balanced greater net N mineralization. A close association between the presence of spring flooding and net N mineralization and net nitrification rates indicated that modifications to prairie marshes that change the pattern of spring inundation will lead to rapid and significant changes in marsh N cycling patterns.  相似文献   

2.
Seedlings of grey alder (Alnus incana Moench), nodulated or unnodulated, were investigated at varied relative addition rate of nitrogen. Nitrogen fixation alone, without addition of mineral nitrogen, resulted in an almost optimum nitrogen status but only about half the maximum relative growth rate, probably mainly because of energy costs of nodulation and fixation. The growth deficit due to nodulation was much more than can be explained by the theoretical energy requirement for the amount of nitrogen fixed. Thus, the nitrogen fixation process was not very efficiently used. The nitrogen fixation rate was strongly stimulated by increasing nitrogen addition rate up to high levels. The fixation rate decreased rapidly close to optimum (maximum relative growth rate) and was negligible at maximum growth. A feed-back of mineral nitrogen on photosynthesis increased fixation rate with time, and the relative importance of fixation over mineral nitrogen nutrition increased. However, nitrogen fixation, also at maximum rate, supplied only a small proportion of the nitrogen amount required for maximum growth. The optimum nutrient solutions contained comparatively high nitrogen concentrations to secure free access to nitrogen. The nodules were damaged by this treatment, and it is concluded that the nitrogen additions must be adjusted to the current consumption of the plants to avoid an increased external nitrogen concentration. Strong linear regressions were found between relative growth rate, nitrogen status expressed as percentage content of fresh weight, and relative growth rate in unnodulated seedlings. There was a greater variability in nodulated seedlings than in unnodulated ones, because of the nitrogen fixation. The reactions of unnodulated grey alder were largely the same as previously reported for birch seedlings, but the maximum growth capacity was lower in grey alder. During an initial period of change in the internal nitrogen status, deficiency symptoms appeared, especially in unnodulated seedlings. As in birch, the leaves turned green again at stable nitrogen status, independent of level. The results are in sharp contrast to data from the literature where the external nitrogen concentration was used as the driving variable for the internal nitrogen status. The measured fixation rates for grey alder are much higher than those previously reported. Still, the maximum fixation rate observed is small compared to the total nitrogen uptake rate required for maximum growth, in contrast to reported relationships. These comparisons indicate that increased external nitrogen concentration obscures the real relations between mineral and fixed nitrogen, on one hand because of rapid inhibition of nitrogen fixation and, on the other hand, because of failure to obtain stable optimum nutrition and maximum growth by means of this treatment variable.  相似文献   

3.
Relationships among growth, N accumulation and assimilation were investigated in Chrysanthemum morifolium Ramat cv. Fiesta in experiments testing the effects of varying levels of NO–33supply and of increasing NH+4 added to a constant level of NO–33 Flowing solution culture systems were used to provide NO?3at concentrations of 0.03 to 5.0 mol m–3 and NH+4 levels from 0.05 to 0.3 mmol m–3 added to 0.1 mol m–3NO?3. Rates of growth, N absorption, accumulation, distribution and utilization were estimated by regression analysis of data obtained from sequential plant harvests, and rates of NO?3 and NH?4 net uptake were estimated from solution depletion. A sustained ambient NO?3 concentration of 0.03 mol m–3 was evidently adequate to support growth, since relative growth rates were not affected by increasing NO?3 supply from 0.03 to 1.0 mol m–3, nor from 0.25 to 5.0 mol m–3, in separate experiments. Shoot growth rates were stimulated by NH4 added to NO?3 one experiment, but not when the experiment was repeated under ambient conditions less favorable to growth. Relative accumulation rates for total N increased with increasing NO?3 and with NH+4added to NO?3 A constant proportion of NO?3 taken up was reduced when NO?3 alone was supplied. Both the proportion of total N taken up as NO?3 and the proportion of NO?3 reduced decreased with increasing NH+3 added to NO?3 NH+4 uptake apparently must exceed a threshold of about 30% of the total uptake to inhibit NO?3 uptake. Utilization of N in chrysanthemum was apparently limited by redistribution since relative accumulation rates for total N were equal to or greater than relative growth rates, in contrast to results reported for several other species. Results of this study and other information support the postulate that NH+4 added to NO?3might stimulate growth by increasing transport of reduced N from roots to shoots, thus increasing the supply of reduced N available to support growth of shoot meristems.  相似文献   

4.
氮锌硒肥配合施用对白三叶的固氮作用与氮转移的影响   总被引:6,自引:2,他引:6  
在湖北省宜昌县百里荒草场山地黄棕壤上配合施用氮锌硒肥,研究其对混播白三叶,混播黑麦草及单播黑麦草的干重及混播白三叶的固氮作用和氮转移的影响,试验结果表明:(1)氮锌硒肥配合施用,混播黑麦草的干重均高于相应处理的单播黑麦草,混播牧草和单播黑麦草重最高的处理都是N46Zn0Se5,其干重辚25.38 g/盆和19.93g/盆。(2)施氮对混播白三叶,混播黑麦草及单播黑麦草的生长有明显的促进作用,施锌,硒对混播白三叶,混播黑麦草及单播黑麦草的生长作用不明显。(3)混播白三叶氮素的主要来源是固氮作用,占全氮产量的57.6000%-77.258%。(4)混播白三叶固定氮的转移量只占混播黑麦草的全氮产量的0.316%-12.251%,通过正交方差分析发现,适量氮肥(N30mg/kg)促进固定氮的转移,高量氮肥(N46mg/kg)抑制固定氮的转移。  相似文献   

5.
6.
7.
The carbon isotope ratio ('13C) of New Zealand mistletoes (-29.51ǂ.10‰) and their hosts (-28.89ǂ.12‰) is generally more negative, and shows less difference between mistletoes and their hosts, than found in previous studies. In 37% of the examined pairs, the '13C of mistletoes was less negative than that of their hosts. These reversals were not associated with the relative position (proximal or distal) of the host material with regard to the mistletoe. Differences between host and mistletoe tended to be greater on hosts with less negative '13C. Both nitrogen content and isotope ratio ('15N) of the mistletoe leaves were strongly correlated with those of their hosts. Nitrogen contents of mistletoe leaves were similar to those of their hosts at low nitrogen contents but proportionately less on hosts with a high nitrogen content, whereas '15N of mistletoes was consistently similar to that of their hosts. The '13C of mistletoes was related to both host nitrogen content and '15N, but '13C in host tissue was related to neither, suggesting that the mistletoes derived both nitrogen and carbon from their hosts. The '13C of both hosts and mistletoes were significantly related to leaf conductance and carbon dioxide concentration but relationships with transpiration and water use efficiency were not significant. In all cases there was no clear separation between the responses of hosts and mistletoes. This may be related to the similarity of stomatal conductance, transpiration and photosynthesis in the studied mistletoes and their hosts and is consistent with the small differences in '13C between mistletoes and hosts found in this study. Consequently, the estimation of mistletoe heterotrophy from carbon discrimination is confounded, as the small difference between host and mistletoe carbon discrimination could equally well result from either similarities in photosynthesis and water relations or heterotrophic assimilation of host-derived carbon. The differences between our study and previous studies (which are mostly from seasonally dry or semi-arid to arid environments) may be related to the temperate environment in which these mistletoes grow. Water is freely available so that the mistletoe is able to obtain sufficient water and dissolved nutrients without having to maintain the high transpiration rate and low water potentials that are needed to extract water from a water-stressed host. Similarly, mistletoe photosynthesis is less inhibited by water stress. The physiological similarities between mistletoe and hosts from a temperate environment are reflected in their similar '13C values.  相似文献   

8.
水氮供应对夏棉产量、水氮利用及土壤硝态氮累积的影响   总被引:6,自引:0,他引:6  
通过田间试验,研究了黄淮地区水氮供应对夏棉生长、产量及水氮利用效率的影响,探索在保证产量的同时提高水氮利用效率、减少农田水氮排放的管理模式.试验设置5个氮素水平(0、60、120、180、240 kg·hm-2,分别记为N0、N1、N2、N3、N4)和3个灌水水平(滴灌,灌水定额30、22.5、15 mm,分别记为I1、I2、I3),使用裂区设计,主区为氮用量,裂区为灌水水平,共15个处理,3次重复.结果表明: 氮素和水分施用对夏棉生长和产量都有明显促进作用,但氮素影响更显著,是该地区调控夏棉生长和籽棉产量的主要因素.随着施氮量和灌水量的增加,花铃期生殖器官积累量、地上部干物质积累量和籽棉产量在开始阶段都逐步增加,当施氮量超过180 kg·hm-2时,进一步增施氮肥会导致生殖器官积累量、地上部干物质积累量和籽棉产量减小.籽棉产量在N3I1处理达到最大,为4016 kg·hm-2.增加施氮量能显著提高地上部总吸氮量和茎叶含氮量,但会降低氮肥偏生产力.灌溉水利用效率和田间水分利用效率分别在N3I3和N3I1处理最大,分别为5.40和1.24 kg·m-3.随着施氮量的增加,土壤硝态氮含量明显增加,且硝态氮累积区域有下移趋势.综合考虑对地上部干物质积累、产量、水氮吸收利用及土壤硝态氮累积等的影响,N3I1处理可作为试验区夏季棉花生产的最优水氮管理方案.  相似文献   

9.
研究华北冬绿肥二月兰对不同供氮水平的响应特征,确定实现绿肥高产高效的土壤适宜供氮量,可为华北集约化农田最大化发挥绿肥生态效应和优化春玉米/冬绿肥轮作体系氮素管理提供理论依据和技术参考.选取多年不施肥试验地设置供氮梯度试验,研究了不同供氮水平对冬绿肥二月兰翻压前地上部生物量累积、氮素吸收、土壤无机氮残留和冬绿肥季土壤氮素平衡的影响.结果表明: 在土壤无机氮含量较低(0~90 cm土层15 kg·hm-2)条件下,施氮显著提高二月兰生物量和吸氮量.其中,施氮90 kg·hm-2处理表现最高,绿肥生物量(干质量)和吸氮量分别为2031.0和42.0 kg·hm-2;土壤无机氮残留量随施氮量增加而增加,且在施氮量高于60 kg·hm-2后呈现快速增加趋势;随施氮量增加二月兰生长季的表观氮平衡表现出由亏缺到盈余的变化特征,在施氮量为60~90 kg·hm-2条件下氮收支基本平衡.土壤供氮量(绿肥播前0~90 cm土壤无机氮含量与施氮量之和)与二月兰生物量、吸氮量和绿肥翻压前土壤无机氮含量的关系可以分别用二次、线性加平台和指数方程进行模拟,依据模型计算二月兰生物量最高值(2010 kg·hm-2)时的播前土壤供氮量和绿肥翻压前土壤无机氮残留量分别是136和78 kg·hm-2;而在二月兰吸氮量最高值40 kg·hm-2时,二月兰生物量为1919 kg·hm-2,相当于最高生物量的95%,绿肥翻压前土壤残留无机氮降低至57 kg·hm-2,与之对应的播前土壤供氮量为105 kg·hm-2,该值与目前华北地区优化施氮下玉米收获后土壤残留无机氮推荐含量(100 kg·hm-2)基本相当.综合考虑绿肥的农学和环境效应,春玉米/冬绿肥轮作体系中二月兰播前土壤供氮量应控制在100~105 kg·hm-2.  相似文献   

10.
Vast areas of southern Chile are now covered by second-growth forests because of fire and logging. To study successional patterns after moderate-intensity, anthropogenic fire disturbance, we assessed differences in soil properties and N fluxes across a chronosequence of seven successional stands (2–130 years old). We examined current predictions of successional theory concerning changes in the N cycle in forest ecosystems. Seasonal fluctuations of net N mineralization (Nmin) in surface soil and N availability (Na; Na=NH 4 + –N+NO 3 –N) in upper and deep soil horizons were positively correlated with monthly precipitation. In accordance with theoretical predictions, stand age was positively, but weakly related to both Na (r 2=0.282, P<0.001) and total N (Ntot; r 2=0.192, P<0.01), and negatively related to soil C/N ratios (r 2=0.187, P<0.01) in surface soils. A weak linear increase in soil Nmin (upper plus deep soil horizons) was found across the chronosequence (r 2=0.124, P<0.022). Nmin occurred at modest rates in early successional stands, suggesting that soil disturbance did not impair microbial processes. The relationship between N fixation (Nfix) in the litter layer and stand age best fitted a quadratic model (r 2=0.228, P<0.01). In contrast to documented successional trends for most temperate, tropical and Mediterranean forests, non-symbiotic Nfix in the litter layer is a steady N input to unpolluted southern temperate forests during mid and late succession, which may compensate for hydrological losses of organic N from old-growth ecosystems.  相似文献   

11.
12.
不同氮磷钾施肥方式对水稻碳、氮累积与分配的影响   总被引:6,自引:0,他引:6  
Feng L  Tong CL  Shi H  Wu JS  Chen AL  Zhou P 《应用生态学报》2011,22(10):2615-2621
基于我国南方双季稻区20年长期田间定位施肥试验,研究了不同氮磷钾施肥方式对水稻碳、氮积累与分配的影响.结果表明:偏施氮肥处理水稻籽实的碳、氮含量最高,分别达到433和18.9 g·kg-1.水稻植株的碳、氮储量以氮磷钾平衡施肥(NPK)及氮磷钾基础上有机物料循环施肥处理(NPKC)最高,其中NPKC和NPK处理籽实碳储量分别为2015和1960kg hm-2,茎叶碳储量分别为2048和2002 kg·hm-2;籽实氮储量分别为80.6和80.5kg·hm-2,茎叶氮储量则以NPK处理最高,为59.3 kg·hm-2.有机无机肥的配合施用显著增加了水稻植株体内碳和氮的累积;与偏施氮肥处理相比,氮磷钾的综合施用更利于水稻生长过程中碳、氮的累积与分配.  相似文献   

13.
Summary Mixed phytoplankton, zooplankton and Thermocyclops hyalinus collected from Fort Moat, at Aligarh (U.P.) India, were analysed for water, nitrogen and phosphorus. Results are generally in agreement with observations of earlier investigators.Phosphorus values are found to be very high. Nutritional condition of zooplankton is noticed to have improved during phytoplankton maxima in the lake.  相似文献   

14.
Chen  Chong-Juan  Liu  Xue-Yan  Wang  Xian-Wei  Hu  Chao-Chen  Xu  Shi-Qi  Mao  Rong  Bu  Zhao-Jun  Fang  Yun-Ting  Koba  Keisuke 《Plant and Soil》2021,467(1-2):345-357
Plant and Soil - Plant carbon (C), nitrogen (N), phosphorus (P) levels and their stoichiometry and N uptake strategies are important aspects influencing vegetation composition and C dynamics in...  相似文献   

15.
The influence of nutrient nitrate level (0-20 millimolar) on the effects of NO2 (0-0.5 parts per million) on nodulation and in vivo acetylene reduction activity of the roots and on growth and nitrate and Kjeldahl N concentration in shoots was studied in bean (Phaseolus vulgaris L. cv Kinghorn Wax) plants. Exposing 8-day old seedlings for 6 hours each day, for 15 days, to 0.02 to 0.5 parts per million NO2 decreased total nodule weight at 0 and 1 millimolar nitrate, and nitrogenase (acetylene reduction) activity at all concentrations of nitrate. The pollutant had little effect on root fresh or dry weights. Shoot growth was inhibited by NO2. The NO2 exposure increased nitrate concentration in roots only at 20 millimolar nutrient nitrate. Exposure to NO2 markedly increased Kjeldahl N concentration in roots but generally decreased that in shoots. The experiments demonstrated that nutrient N level and NO2 concentration act jointly in affecting nodulation and N fixing capability, plant growth and composition, and root/shoot relationships of bean plants.  相似文献   

16.
The effect of light, temperature and ammonium on inorganic nitrogen uptake by phytoplankton was investigated from June 1994 through December 1995 at three sites in the Tagus estuary (Portugal), during high tide of neap tides. Ammonium concentrations higher than 10 M reduced nitrate uptake down to 24% but never prevented it. Below this threshold concentration, nitrate uptake was neither inhibited nor changed. Uptake of both nitrate and ammonium as a function of light intensity exhibited a saturation response. Uptake reduction occurred in the near bottom phytoplankton populations, particularly for nitrate. The ammonium uptake system was less limited by light than the nitrate uptake system, indicating the importance of ammonium as a nitrogen source for the phytoplankton which is likely to experience high changes in light in the well-mixed water column of this estuarine environment. Ammonium uptake was exponentially related to temperature in the upper estuary whereas in the mid and lower estuary this relationship was linear. The effect of temperature on nitrate uptake was linear but far less marked than for ammonium uptake.  相似文献   

17.
Photosynthesis, photorespiration and nitrogen metabolism   总被引:16,自引:6,他引:10  
Abstract. The ATP and reduced ferredoxin generated in photosynthetic reactions in the chloroplast are utilized for a large number of reactions other than CO2-fixation. Quantitatively the most important reaction is the reassimilation of ammonia liberated during photorespiration in C3 plants via the glutamate synthase cycle. Chloroplasts are also able to reduce nitrite to ammonia, sulphate to sulphide, and synthesize a number of amino acids. The amino acids essential for human nutrition are all synthesized in the chloroplast and evidence is presented to suggest that they may be the sole site of such biosynthetic reactions.  相似文献   

18.
施用氮肥对油用牡丹叶片氮素吸收积累与籽粒品质的影响   总被引:1,自引:0,他引:1  
利用田间栽培试验,研究0 (对照)、18、24和30 g N·m-2 4个氮肥用量对油用牡丹“凤丹”叶片氮素吸收转运以及籽粒产量和品质的影响.结果表明: 施用氮肥处理牡丹株高、冠幅、花径和花干质量与对照相比均显著增加,其中,24和30 g·m-2氮肥处理株高比对照分别增加14.7%和15.2%.施用氮肥提高了牡丹籽粒的相关指标,24和30 g·m-2氮肥处理籽粒产量达到最大,分别比对照增加15.2%和15.4%.施用氮肥明显增加了叶片氮素积累量、叶片氮素转移量和籽粒氮素积累量.其中,24 g·m-2氮肥处理叶片氮素对籽粒贡献率最大.与对照相比,施用氮肥明显提高了籽粒蛋白氮、总氨基酸,以及部分饱和脂肪酸和不饱和脂肪酸的含量.在本试验条件下,施氮量为24 g N·m-2时,叶片积累氮素向籽粒的转移量、转移率和贡献率均达到较高水平,籽粒产量较高,并且蛋白氮、氨基酸含量和不饱和脂肪酸含量也相对较高.  相似文献   

19.
A 12-week greenhouse experiment was conducted to determine the effect of the polyphenol, lignin and N contents of six legumes on their N mineralization rate in soil and to compare estimates of legume-N release by the difference and 15N-recovery methods. Mature tops of alfalfa (Medicago sativa L.), round leaf cassia (Cassia rotundifolia Pers., var. Wynn), leucaena (Leucaena leucocephala Lam., deWit), Fitzroy stylo (Stylosanthes scabra Vog., var Fitzroy), snail medic (Medicago scutellata L.), and vigna (Vigna trilobata L., var verde) were incorporated in soil at the rate of 100 mg legume N kg-1 soil. The medic and vigna were labeled with 15N. Sorghum-sudan hybrid (Sorghum bicolor, L. Moench) was used as the test crop. A non-amended treatment was used as a control. Net N mineralization after 12 weeks ranged from 11% of added N with cassia to 47% of added N for alfalfa. With the two legumes that contained less than 20 g kg-1 of N, stylo and cassia, there was net N immobilization for the first 6 weeks of the experiment. The legume (lignin + polyphenol):N ratio was significantly correlated with N mineralization at all sampling dates at the 0.05 level and at the 0.01 level at 6 weeks (r2=0.866). Legume N, lignin, or polyphenol concentrations or the lignin:N ratio were not significantly correlated with N mineralization at any time. The polyphenol:N ratio was only significantly correlated with N mineralization after 9 weeks (r2=0.692). The (lignin + polyphenol):N ratio appears to be a good predictor of N mineralization rates of incorporated legumes, but the method for analyzing plant polyphenol needs to be standardized. Estimates of legume-N mineralization by the difference and 15N recovery methods were significantly different at all sampling dates for both 15N-labeled legumes. After 12 weeks, estimates of legume-N mineralization averaged 20% more with the difference method than with the 15N recovery method. This finding suggests that estimates of legume N available to subsequent crops should not be based solely on results from 15N recovery experiments.  相似文献   

20.
Kaelke  C.M.  Dawson  J.O. 《Plant and Soil》2003,254(1):167-177
Alteration of natural flooding regimes can expose lowlands to waterlogged soil conditions during any month of the year. The seasonality of flooding may have profound effects on the carbon and nitrogen budgets of N-fixing alders (Alnus spp.), and in turn, may impact the C and N economy of extensive alder-dominated, wetland ecosystems, including those dominated by speckled alder (Alnus incana ssp. rugosa). To better understand this process, two-year-old, nodulated seedlings of speckled alder were subjected to late spring (May 10 – July 10), summer (July 10 – September 8), and fall (September 8 – November 8) flooding treatments. Alders were root-flooded outdoors in tanks containing an N-free nutrient solution and compared with unflooded alders at the experimental site. Flooding arrested N fixation, photosynthesis, and growth of alders without recovery in all flooding treatments for the remainder of the growing season. Late spring and summer flooding resulted in complete mortality of alders while all seedlings survived flooding in the fall. Fall flooding increased foliar N resorption by 140% over unflooded seedlings. Eighty-seven percent of the total N fixed and 89% of biomass accumulation for the entire growing season occurred in unflooded alders after July 10. In unflooded alders, nitrogen fixation rates per unit mass declined by 63% for nodules, 28% for leaves, and 48% for whole seedlings during the fall, while total N fixed per plant in the fall was similar to that fixed in the summer. The majority of newly fixed N in unflooded alders was allocated to leaves before September 8 and to roots/nodules combined after September 8. In unflooded plants, the greatest proportion of new biomass was partitioned to leaves before July 10, to stems between July 10 and September 8, and equally to stems and roots/nodules after September 8. Fall-flooded alders did not increase root or nodule biomass. Proportional allocation of plant resources were such that the ratio of N fixed to seedling growth of unflooded alders decreased by 19% during summer before rebounding by 6% in fall. Seasonality of flooding alters seedling survival, growth, and resource allocation, and may be a critical determinant of speckled alder recruitment and occurrence in wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号