共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In order to clarify the functional role of individual ectomycorrhizal (EcM) fungal species in the field, we need to relate their abundance and distribution as mycorrhizas to their abundance and distribution as extramatrical mycelium (EMM). We divided each of four 20 cm x 20 cm x 2 cm slices of pine forest soil into 100 cubes of 2 cm x 2 cm. For each cube, ectomycorrhizas were identified and the presence of EMM of the EcM fungi recorded as ectomycorrhizas was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of ITS rDNA. Ectomycorrhizas and EMM of seven EcM species were mapped. Spatial segregation of mycorrhizas and EMM was evident and some species produced their EMM in different soil layers from their mycorrhizas. The spatial relationship between mycorrhizas and their EMM generally conformed to their reported exploration types, but EMM of smooth types (e.g. Lactarius rufus) was more frequent than expected. Different EcM fungi foraged at different spatial scales. 相似文献
3.
Four methods were compared for inoculating red clover with selected mycorrhizal fungi when sown in a field containing an indigenous mycorrhizal population. The largest amount of mycorrhizal infection (around 65% of root length infected) was obtained by placing inoculum with the seeds in furrows. The inoculum used was standard soil inoculum from stock plant cultures spread by hand or the same inoculum concentrated to about one seventh by wet-sieving, and then fluid-drilled. The effectiveness of multiseeded pellets (seeds stuck onto pellets of soil inoculum) applied broadcast was more variable, infection ranging widely around an average of 30%. Applying both soil inoculum and seeds broadcast produced just under 10% infection, similar to that in the controls given autoclaved inoculum. Seedling establishment, in contrast, was-better where seeds were applied broadcast than in furrows. It seemed therefore that multiseeded pellets might be the best compromise for achieving reasonable infection in most plants, but fluid drilling had the advantages of greatly reducing the amount of inoculum needed and of readily combining seeds and inoculum in a single carrier. 相似文献
4.
Few studies have examined how below-ground interactions among plants affect the abundance and community composition of symbiotic mycorrhizal fungi. Here, we combined observations during drought with a removal experiment to examine the effects of below-ground interactions with arbuscular mycorrhizal (AM) shrubs on the growth of pinyon pines (Pinus edulis), and the abundance and community composition of their ectomycorrhizal (EM) fungi. Shrub density was negatively correlated with pinyon above- and below-ground growth and explained 75% of the variation in EM colonization. Consistent with competitive release, pinyon fine-root biomass, shoot length and needle length increased with shrub removal. EM colonization also doubled following shrub removal. EM communities did not respond to shrub removal, perhaps because of their strikingly low diversity. These results suggest that below-ground competition with AM shrubs negatively impacted both pinyons and EM fungi. Similar competitive effects may be observed in other ecosystems given that drought frequency and severity are predicted to increase for many land interiors. 相似文献
5.
The inoculation ofEucalyptus pilularis seedlings withPisolithus tinctorius and the subsequent development of ectomycorrhizas, led to an improved acquisition of phosphorus (P) from three different sources of P. These sources included insoluble phytate. Dry weight gain of seedlings was increased by inoculation in those treatments where growth was limited by P supply. 相似文献
6.
Maize (Zea mays) and sorghum (Sorghum bicolor) were inoculated with a range of VAM fungi and grown under water-stressed and unstressed conditions. There was considerable variation amongst the inocula in their effects on plant growth. Inoculation with Glomus clarum produced the biggest plants in each host, with Glomus monosporum and Acaulospora sp. giving the least growth overall. Root infection produced by the different inocula also varied, but levels were not correlated with effects on plant growth. Water-stress reduced plant growth, with the effects not being altered by mycorrhizal infection. VAM infection levels were not affected by water-stress. Spore production from most inocula was reduced by water-stress, both in total spore numbers and in terms of spores per gram plant weight. Sporulation of G. clarum, G. epigeum and G. monosporum were affected less by stress than were the other inocula. Spore production was in general greater on sorghum than on maize, but the host effect varied amongst the inocula. 相似文献
7.
8.
Hemichannels, which are one half of the gap junction channels, have independent physiological roles. Although hemichannels consisting of connexins are more widely documented, hemichannels of pannexins, proteins homologous to invertebrate gap junction proteins also have been studied. There are at least 21 different connexin and three pannexin isotypes. This variety in isotypes results in tissue-specific hemichannels, which have been implicated in varied events ranging from development, cell survival, to cell death. Hemichannel function varies with its spatio-temporal opening, thus demanding a refined degree of regulation. This review discusses the activity of hemichannels and the molecules released in different physiological states and their impact on tissue functioning. 相似文献
9.
10.
11.
12.
To investigate beneficial effects of mycorrhizal fungi to advanced leafy orchids, growth studies on the development of symbiotic seedlings of the orchid Cattleya (aclandiae x schoeffeldiana) x aclandiae were conducted in vitro over a period of 18 months using split plates with minerals and carbohydrates on one side and water agar on the other. Mycorrhizal infection and shoot and root growth of seedlings on the nutrient side were compared to growth on the water agar side with nutrient uptake by the orchid only possible via external mycorrhizal hyphae. Seed germination was followed by mycorrhizal infection and rapid development of protocorms on both nutrient and non-nutrient sides of the plates. With 0.5% starch, development of protocorms was sustained for a least 12 weeks, compared to only 6 weeks with 0.1% starch. Advanced protocorms with two small leaves and a smoll root were transferred at week 22 to new fungal plates. When harvested at week 43, plantlets on 0.5% starch (both nutrient and water agar sides) had 2.7 times the dry weight of plantlets on 0.1% starch. Shoot-root ratios were higher on the lower level of carbon. In all plantlets, mycorrhizal infection involved less than 5% of the root length. With zero, 0.1% or 0.5% starch, the roots were re-infected on transfer to fresh fungal plates but young roots that developed following the transfer stayed free of infection, Plantlets on 0.5% starch (nutrient and water agar side) after 18 months had longer roots than plantlets grown in the absence of starch or on 0.1% starch. Shoots were small but significantly larger on the nutrient side than on the water agar side, independent of the carbohydrate level. The shoot-root ratio was highest on the nutrient side with no starch present. In this latter case, plantlet development was steady but plantlets on the non-nutrient side developed slowly; thus there was little evidence of nutrient translocation by the mycorrhizal fungus from the nutrient to the non-nutrient side in the absence of carbohydrates. Mycorrhizal infection is discussed as a mechanism for heterotrophic carbon assimilation. In advanced leafy orchids of Cattleya, external carbon resulted in increased root growth, decreased shoot/root ratio and sometimes yellowish-green plantlets. 相似文献
13.
Ian A. Dickie Laura B. Martínez-García Nina Koele G.-A. Grelet Jason M. Tylianakis Duane A. Peltzer Sarah J. Richardson 《Plant and Soil》2013,367(1-2):11-39
Background and scope
Plant communities and underlying soils undergo substantial, coordinated shifts throughout ecosystem development. However, shifts in the composition and function of mycorrhizal fungi remain poorly understood, despite their role as a major interface between plants and soil. We synthesise evidence for shifts among mycorrhizal types (i.e., ectomycorrhizas, arbuscular and ericoid mycorrhizas) and in fungal communities within mycorrhizal types along long-term chronosequences that include retrogressive stages. These systems represent strong, predictable patterns of increasing, then declining soil fertility during ecosystem development, and are associated with coordinated changes in plant and fungal functional traits and ecological processes.Conclusions
Mycorrhizal types do not demonstrate consistent shifts through ecosystem development. Rather, most mycorrhizal types can dominate at any stage of ecosystem development, driven by biogeography (i.e., availability of mycorrhizal host species), plant community assembly, climate and other factors. In contrast to coordinated shifts in soil fertility, plant traits and ecological processes throughout ecosystem development, shifts in fungal communities within and among mycorrhizal types are weak or idiosyncratic. The consequences of these changes in mycorrhizal communities and their function for plant–soil feedbacks or control over long-term nutrient depletion remain poorly understood, but could be resolved through empirical analyses of long-term soil chronosequences. 相似文献14.
Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth 总被引:5,自引:0,他引:5
Arbuscular mycorrhizal (AM) fungi and bacteria can interact synergistically to stimulate plant growth through a range of mechanisms that include improved nutrient acquisition and inhibition of fungal plant pathogens. These interactions may be of crucial importance within sustainable, low-input agricultural cropping systems that rely on biological processes rather than agrochemicals to maintain soil fertility and plant health. Although there are many studies concerning interactions between AM fungi and bacteria, the underlying mechanisms behind these associations are in general not very well understood, and their functional properties still require further experimental confirmation. Future mycorrhizal research should therefore strive towards an improved understanding of the functional mechanisms behind such microbial interactions, so that optimized combinations of microorganisms can be applied as effective inoculants within sustainable crop production systems. In this context, the present article seeks to review and discuss the current knowledge concerning interactions between AM fungi and plant growth-promoting rhizobacteria, the physical interactions between AM fungi and bacteria, enhancement of phosphorus and nitrogen bioavailability through such interactions, and finally the associations between AM fungi and their bacterial endosymbionts. Overall, this review summarizes what is known to date within the present field, and attempts to identify promising lines of future research. 相似文献
15.
Background
A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. 相似文献16.
PETER A. VESK ANNE E. ASHFORD ANNE-LAURE MARKOVINA & WILLIAM G. ALLAWAY 《The New phytologist》2000,145(2):333-346
The apoplasmic permeability of ectomycorrhizal roots of intact Eucalyptus pilularis seedlings infected with Pisolithus tinctorius on aseptic agar plates was examined using the nonbinding fluorochrome 8-hydroxypyrene-1,3,6-trisulphonate and lanthanum ions in conjunction with anhydrous freeze substitution and dry sectioning. Most mycorrhizas formed in the air above the agar surface, and in these the sheath rapidly became nonwettable and impermeable to the fluorochrome but was nevertheless permeable to lanthanum ions. In a few mycorrhizas which developed in contact with the agar the sheath remained permeable to both tracers when fully developed. This increased hydrophobicity of the sheath in mycorrhizas in the air above the agar surface might be explained by deposition of hydrophobins, but nevertheless it still allows an apoplasmic pathway for radial movement of ions. Regardless of their sheath permeation both apoplasmic tracers were always found throughout the Hartig net and were arrested at the Casparian bands and suberin lamellae of the exodermis. It is concluded that the fluorochrome must have moved longitudinally along the Hartig net which is a region of higher permeability than the sheath. Casparian bands in the exodermis of ectomycorrhizal roots have similar properties to those in nonmycorrhizal roots in excluding solutes and their exclusion of lanthanum ions indicates that they are not permeable to ions. The data do not support the concept of a totally sealed apoplasmic exchange compartment, but the differential permeability suggests that the sheath might allow radial transfer of ions but block loss of sugars and organic molecules of similar size. 相似文献
17.
Mycorrhizal growth rates were measured monthly, using a new method, in two neighouring plots of a natural spruce stand. One
of the plots was irrigated while the other suffered from drought during the late summer and autumn months. Drought did not
completely stop mycorrhizal growth. It caused a higher rate of root dormancy and a reduced elongation rate of the parent roots
but an increased development of new mucorrhizal last order laterals. Thus, the branching density of the very fine root system
was increased, even though fewer growing mycorrhizae were found in the non-irrigated plot during the dry period. Similar results
were observed in a water-stress experiment with pot-cultures. After rewetting, elongation rate was stimulated and the number
of growing mycorrhizae increased rapidly on the non-irrigated plot. Possible relationships between dry weight, distribution
and branching density of growing fine root systems are presented. 相似文献
18.
19.
Sbrana C Agnolucci M Bedini S Lepera A Toffanin A Giovannetti M Nuti MP 《FEMS microbiology letters》2002,211(2):195-201
Isolation and physiological and molecular characterisation of culturable bacterial strains belonging to actinomycetes, pseudomonads and aerobic spore-forming bacteria were carried out on mycorrhizal root tips of Quercus robur var. peduncolata infected by Tuber borchii. Cellular density of the three bacterial groups in ectomycorrhizal root tips was estimated to be 1.3+/-0.11 x 10(6) cfu g(-1) dry weight for total heterotrophic bacteria and 1.08+/-0.6 x 10(5) (mean+/-S.E.), 1.3+/-0.3 x 10(5) and 1.4+/-0.2 x 10(5) cfu g(-1) dry weight for pseudomonads, actinomycetes and spore-forming bacteria respectively. Identification of pseudomonads by the Biolog system indicated, besides the most represented species Pseudomonas fluorescens (biotypes B, F and G), the occurrence of strains belonging to Pseudomonas corrugata. Amplified ribosomal DNA restriction analysis of actinomycetes and spore formers revealed at least three and six different groups of patterns, respectively. Many bacterial isolates were able to induce variations in growth rates of T. borchii mycelium; among these, 101 strains showed antifungal activity, whereas 17 isolates, belonging to spore formers, were able to increase mycelial growth up to 78% when compared to uninoculated mycelial growth. The potential role of these populations in the development and establishment of mycorrhizas is discussed. 相似文献