首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of p-fluorophenylalanine (FPA) on deoxyribonucleic acid (DNA) synthesis and chromosome replication was studied in a thymine-requiring mutant of Escherichia coli. The rate and extent of chromosome replication were followed by labeling the DNA with isotopic thymine and a density marker, bromouracil. The DNA was extracted and analyzed by CsCl gradient centrifugation. The block in chromosome replication caused by high concentrations of FPA occurred at the same point on the chromosome as that caused by amino acid starvation. In a random culture, DNA in cells treated with FPA replicated only slightly slower than the DNA from cells that were not exposed to the analogue. In cultures which had been previously starved for thymine, however, the DNA from the cells treated with FPA showed a marked decrease in the rate and extent of replication. It was concluded that the E. coli cell is most sensitive to FPA when a new cycle of chromosome replication is being initiated at the beginning of the chromosome.  相似文献   

2.
A method of computer analysis was developed to evaluate the kinetic changes in the rate of cell division in non-synchronous cultures of E. coli resulting from changes in the velocity or initiation of chromosome replication. This method takes into account that the cell division pathway in E. coli includes a reaction of indeterminate length described by a probability function that applies to the cell population. The analysis yields a hypothetical cell number kinetics as it would be observed if the stochastic element in the division pathway were absent. Since this derived cell number curve responds to experimentally induced perturbations of replication at defined times whereas the actual cell number curve reflects these perturbations only in a blurred fashion, replication and division events can be precisely correlated with this method. The method was applied to the evaluation of thymine starvation experiments with two Thy- derivatives of E. coli B/r; one of the strains has a mutationally altered (60% increased) cell mass at initiation of chromosome replication. In both strains, the stochastic phase of the cell cycle had the same half-life value of 10 min and began 18 min after each termination of replication. This suggests that the time of cell division is linked to replication, not to cell mass or length. This interpretation is supported by results of experiments in which the rate of cell growth was altered at the time of thymine starvation.  相似文献   

3.
Billen, Daniel (University of Texas M. D. Anderson Hospital and Tumor Institute, Houston, Tex.), and Roger Hewitt. Influence of starvation for methionine and other amino acids on subsequent bacterial deoxyribonucleic acid replication. J. Bacteriol. 92:609-617. 1966.-A study has been made of the subsequent replicative fate of deoxyribonucleic acid (DNA) synthesized during amino acid starvation by several multiauxotrophic strains of Escherichia coli. Using radioisotopic and density labels and a procedure whereby total cellular DNA is analyzed, we have confirmed and extended a recent report that the DNA made during amino acid starvation behaves anomalously during subsequent DNA replication. When 5-bromouracil (BU) serves as the density lable, 40% or more of the DNA synthesized during starvation will subsequently fail to replicate during three cell generations. Selective amino acid effects were noted. In two methionine-requiring bacteria, methionine deprivation appeared to be of singular importance in influencing the subsequent replicative fate of the DNA made in its absence.When a non-BU density label (N(15), C(13)) was utilized, the effects of amino acid starvation were less obvious. Although the DNA synthesized during complete amino acid starvation in a methionine-requiring E. coli was subsequently more slowly replicated, most of the DNA was finally duplicated during three generations of growth. If methionine was present during starvation for other required amino acids, the subsequent replication rate of the DNA synthesized during this time was more nearly normal, and complete replication was observed. The results have been interpreted as indicating that DNA synthesized during amino acid starvation, and especially during methionine starvation, is somehow altered, and that BU substitution for thymine may interfere with the restoration of such DNA to its replicative state.  相似文献   

4.
In Escherichia coli, the Y-family DNA polymerases Pol IV (DinB) and Pol V (UmuD2'C) enhance cell survival upon DNA damage by bypassing replication-blocking DNA lesions. We report a unique function for these polymerases when DNA replication fork progression is arrested not by exogenous DNA damage, but with hydroxyurea (HU), thereby inhibiting ribonucleotide reductase, and bringing about damage-independent DNA replication stalling. Remarkably, the umuC122::Tn5 allele of umuC, dinB, and certain forms of umuD gene products endow E. coli with the ability to withstand HU treatment (HUR). The catalytic activities of the UmuC122 and DinB proteins are both required for HUR. Moreover, the lethality brought about by such stalled replication forks in the wild-type derivatives appears to proceed through the toxin/antitoxin pairs mazEF and relBE. This novel function reveals a role for Y-family polymerases in enhancing cell survival under conditions of nucleotide starvation, in addition to their established functions in response to DNA damage.  相似文献   

5.
Inhibition of DNA replication with hydroxyurea during thymine starvation of Escherichia coli shows that active DNA synthesis is not required for thymineless death (TLD). Hydroxyurea experiments and thymine starvation of lexA3 and uvrA DNA repair mutants rule out unbalanced growth, the SOS response, and nucleotide excision repair as explanations for TLD.  相似文献   

6.
7.
8.
Martín CM  Guzmán EC 《DNA Repair》2011,10(1):94-101
Thymine deprivation results in the loss of viability in cells from bacteria to eukaryotes. Numerous studies have identified a variety of molecular processes and cellular responses associated with thymineless death (TLD). It has been observed that TLD occurs in actively growing cells, and DNA damage and DNA recombination structures have been associated with cells undergoing TLD. We measured the loss of viability in thymine-starved cells differing in the number of overlapping replication cycles (n), and we found that the magnitude of TLD correlates with the number of replication forks. By using pulsed field gel electrophoresis (PFGE), we determined the proportion of linear DNA (DSBs) and the amount of DNA remaining in the well after treatment with XbaI (nmDNA) under thymine starvation in the absence or presence of both rifampicin (suppressing TLD) and hydroxyurea (maintaining TLD). Our results indicate that DSBs and nmDNA are induced by thymine starvation, but they do not correlate with the lethality observed in the presence of the drugs. We asked whether TLD was related to chromosomal DNA initiation. DNA labeling experiments and flow cytometric analyses showed that new initiation events were induced under thymine starvation. These new DNA replication initiation events were inhibited in the presence of rifampicin but not in the presence of hydroxyurea, indicating that TLD correlates with the induction of new initiation events in Escherichia coli. In support of this finding, cells carrying a deletion of the datA site, in which DNA initiation is allowed in the presence of rifampicin, underwent TLD in the presence of rifampicin. We propose that thymineless-induced DNA initiation generates a fraction of DNA damage and/or nmDNA at origins that is critical for TLD. Our model provides new elements to be considered when testing mammalian chemotherapies that are based on the inhibition of thymidylate synthetase.  相似文献   

9.
To probe the mechanisms of mutagenesis induced by thymine starvation, we examined the mutational specificity of this treatment in strains of Escherichia coli that are wild type (Ung+) or deficient in uracil-DNA-glycosylase (Ung-). An analysis of Ung+ his-4 (ochre) revertants revealed that the majority of induced DNA base substitution events were A:T----G:C transitions. However, characterization of lacI nonsense mutations induced by thymine starvation demonstrated that G:C----A:T transitions and all four possible transversions also occurred. In addition, thymineless episodes led to reversion of the trpE9777 frameshift allele. Although the defect in uracil-DNA-glycosylase did not appear to affect the frequency of total mutations induced in lacI by thymine deprivation, the frequency of nonsense mutations was reduced by 30%, and the spectrum of nonsense mutations was altered. Furthermore, the reversion of trpE9777 was decreased by 90% in the Ung- strain. These findings demonstrate that in E. coli, thymine starvation can induce frameshift mutations and all types of base substitutions. The analysis of mutational specificity indicates that more than a single mechanism is involved in the induction of mutation by thymine depletion. We suggest that deoxyribonucleoside triphosphate pool imbalances, the removal of uracil incorporated into DNA during thymine starvation, and the induction of recA-dependent DNA repair functions all may play a role in thymineless mutagenesis.  相似文献   

10.
11.
In 1954, Cohen and Barner discovered that a thymine auxotrophic (thyA) mutant of Escherichia coli undergoes cell death in response to thymine starvation. This phenomenon, called thymineless death (TLD), has also been found in many other organisms, including prokaryotes and eukaryotes. Though TLD has been studied intensively, its molecular mechanism has not yet been explained. Previously we reported on the E. coli mazEF system, a regulatable chromosomal suicide module that can be triggered by various stress conditions. MazF is a stable toxin, and MazE is an unstable antitoxin. Here, we show that cell death that is mediated by the mazEF module can also be activated by thymine starvation. We found that TLD depends on E. coli mazEF and that under thymine starvation, the activity of the mazEF promoter P(2) is significantly reduced. Our results, which describe thymine starvation as a trigger for a built-in death program, have implications for programmed cell death in both prokaryotes and eukaryotes.  相似文献   

12.
J J Lin  A Sancar 《Biochemistry》1989,28(20):7979-7984
Escherichia coli (A)BC excinuclease is the major enzyme responsible for removing bulky adducts, such as pyrimidine dimers and 6-4 photoproducts, from DNA. Mutants deficient in this enzyme are extremely sensitive to UV and UV-mimetic agents, but not to oxidizing agents, or ionizing radiation which damages DNA in part by generating active oxygen species. DNA glycosylases and AP1 endonucleases play major roles in repairing oxidative DNA damage, and thus it has been assumed that nucleotide excision repair has no role in cellular defense against damage by ionizing radiation and oxidative damage. In this study we show that the E. coli nucleotide excision repair enzyme (A)BC excinuclease removes from DNA the two major products of oxidative damage, thymine glycol and the baseless sugar (AP site). We conclude that nucleotide excision repair is an important cellular defense mechanism against oxidizing agents.  相似文献   

13.
Single-strand circular DNA from bacteriophage M13mp9 was chemically modified with osmium tetroxide to introduce specifically cis-thymine glycol lesions, a major type of DNA damage produced by ionizing radiation. An oligonucleotide primer was extended on damaged and undamaged templates using either the large fragment of E. coli pol I or T4 DNA polymerase. The reaction products were analysed by electrophoresis alongside a DNA sequence ladder. Synthesis on the damaged templates terminated at positions opposite thymine bases in the template. These results indicate that cis-thymine glycol lesions in single-strand DNA constitute blocks to synthesis by DNA polymerases in vitro. Surprisingly, replication halts after the correct nucleotide, dAMP, is inserted opposite the lesion. These results imply that the primary effect of the thymine glycol lesion is suppression of DNA synthesis and that the lesion is not a potent mutagen.  相似文献   

14.
Multicopy plasmids in Escherichia coli are not randomly distributed throughout the cell but exist as defined clusters that are localized at the mid-cell, or at the 1/4 and 3/4 cell length positions. To explore the factors that contribute to plasmid clustering and localization, E. coli cells carrying a plasmid RK2 derivative that can be tagged with a green fluorescent protein-LacI fusion protein were subjected to various conditions that interfere with plasmid superhelicity and/or DNA replication. The various treatments included thymine starvation and the addition of the gyrase inhibitors nalidixic acid and novobiocin. In each case, localization of plasmid clusters at the preferred positions was disrupted but the plasmids remained in clusters, suggesting that normal plasmid superhelicity and DNA synthesis in elongating cells are not required for the clustering of individual plasmid molecules. It was also observed that the inhibition of DNA replication by these treatments produced filaments in which the plasmid clusters were confined to one or two nucleoid bodies, which were located near the midline of the filament and were not evenly spaced throughout the filament, as is found in cells treated with cephalexin. Finally, the enhanced yellow fluorescent protein-RarA fusion protein was used to localize the replication complex in individual E. coli cells. Novobiocin and nalidixic acid treatment both resulted in rapid loss of RarA foci. Under these conditions the RK2 plasmid clusters were not disassembled, suggesting that a completely intact replication complex is not required for plasmid clustering.  相似文献   

15.
Thymineless death strikes cells unable to synthesize DNA precursor dTTP, with the nature of chromosomal damage still unclear. Thymine starvation stalls replication forks, whereas accumulating evidence indicates the replication origin is also affected. Using a novel DNA labeling technique, here we show that replication slowly continues in thymine-starved cells, but the newly synthesized DNA becomes fragmented and degraded. This degradation apparently releases enough thymine to sustain initiation of new replication bubbles from the chromosomal origin, which destabilizes the origin in a RecA-dependent manner. Marker frequency analysis with gene arrays 1) reveals destruction of the origin-centered chromosomal segment in RecA(+) cells; 2) confirms origin accumulation in the recA mutants; and 3) identifies the sites around the origin where destruction initiates in the recBCD mutants. We propose that thymineless cells convert persistent single-strand gaps behind replication forks into double-strand breaks, using the released thymine for new initiations, whereas subsequent disintegration of small replication bubbles causes replication origin destruction.  相似文献   

16.
A previously reported salt-sensitive binding of deoxyribonucleic acid (DNA) to the cell envelope in Escherichia coli, involving approximately one site per chromosome near the origin of DNA replication, is rapidly disrupted in vivo by rifampin or chloramphenicol treatment and by amino acid starvation. DNA replication still initiates with this origin-specific binding disrupted, even when the disruption extends over the period of obligatory protein and ribonucleic acid synthesis that must precede initiation after release of cells from amino acid starvation. Thus the origin-associated membrane-DNA interaction is not necessary either for the initiation event itself or for the maturation of a putative initiation apparatus in E. coli.  相似文献   

17.
Duzen JM  Walker GC  Sutton MD 《DNA Repair》2004,3(3):301-312
Variants of a pentapeptide sequence (QL[S/F]LF), referred to as the eubacterial clamp-binding motif, appear to be required for certain proteins to bind specifically to the Escherichia coli beta sliding clamp, apparently by making contact with a hydrophobic pocket located at the base of the C-terminal tail of each beta protomer. Although both UmuC (DNA pol V) and the alpha catalytic subunit of DNA polymerase III (pol III) each bear a reasonable match to this motif, which appears to be required for their respective interactions with the clamp, neither UmuD not UmuD' do. As part of an ongoing effort to understand how interactions involving the different E. coli umuDC gene products and components of DNA polymerase III help to coordinate DNA replication with a DNA damage checkpoint control and translesion DNA synthesis (TLS) following DNA damage, we characterized the surfaces on beta important for its interactions with the two forms of the umuD gene product. We also characterized the surface of beta important for its interaction with the alpha catalytic subunit of pol III. Our results indicate that although UmuD, UmuD' and alpha share some common contacts with beta, each also makes unique contacts with the clamp. These findings suggest that differential interactions of UmuD and UmuD' with beta impose a DNA damage-responsive conditionality on how beta interacts with the translesion DNA polymerase UmuC. This is formally analogous to how post-translational modification of the eukaryotic PCNA clamp influences mutagenesis. We discuss the implications of our findings in terms of how E. coli might coordinate the actions of the umuDC gene products with those of pol III, as well as for how organisms in general might manage the actions of their multiple DNA polymerases.  相似文献   

18.
T7 and E. coli share homology for replication-related gene products   总被引:2,自引:0,他引:2  
H Toh 《FEBS letters》1986,194(2):245-248
Recently, the complete nucleotide sequence of the bacteriophage T7 genome was determined and 50 genes were identified on the genome. We compared amino acid sequences of all the gene products of T7 and replication-related gene products of E. coli. As a result, we found that T7 and E. coli share homology for each pair of exonuclease, DNA primase and helix-destabilizing protein. For E. coli, these gene products are known to be involved in the process of discontinuous DNA replication. These observations suggest that T7 and E. coli have a common origin for a part of their replication systems.  相似文献   

19.
Addition of cyclic adenosine 3'-5'-monophosphate (c-AMP) to growing Escherichia coli cells, colicinogenic for the plasmid ColE1, results in a fourfold stimulation in the rate of synthesis of the plasmid deoxyribonucleic acid (DNA). The stimulation is transient (30 min) and is succeeded by a brief period (30 min) of cessation of plasmid DNA replication. The stimulation of ColE1 DNA replication also occurs in chloramphenicol-treated cells. Rifampin inhibits ColE1 DNA replication in the presence or absence of c-AMP. Employing thymine starvation conditions to stop ColE1 DNA synthesis, it was found that c-AMP, added during the period of thymine starvation, effected a stimulation in the amount of subsequent replication which took place when replicating conditions were restored. The stimulatory effect of c-AMP under these conditions was not prevented by chloramphenicol but was completely eliminated when rifampin was present. Under these conditions, when rifampin was added after the effect of c-AMP was allowed to occur, subsequent replication of the plasmid could take place, but only one round of replication occurred. A model to account for the c-AMP effects is presented.  相似文献   

20.
Masai H  Deneke J  Furui Y  Tanaka T  Arai KI 《Biochimie》1999,81(8-9):847-857
The E. coli PriA protein, a DEXH-type DNA helicase with unique zinc finger-like motifs interrupting the helicase domains, is an essential component of the phiX174-type primosome and plays critical roles in RecA-dependent inducible and constitutive stable DNA replication (iSDR and cSDR, respectively) as well as in recombination-dependent repair of double-stranded DNA breaks. B. subtilis PriA (BsPriA) protein contains the conserved helicase domains as well as zinc finger-like motifs with 34% overall identity with the E. coli counterpart. We overexpressed and purified BsPriA and examined its biochemical properties. BsPriA binds specifically to both n'-pas (primosome assembly site) and D-loop and hydrolyzes ATP in the presence of n'-pas albeit with a specific activity about 30% of that of E. coli PriA. However, it is not capable of supporting n'-pas-dependent replication in vitro, nor is it able to support ColE1-type plasmid replication in vivo which requires the function of the phiX174-type primosome. We also show that a zinc finger mutant is not able to support recombination-dependent DNA replication, as measured by the level of iSDR after a period of thymine starvation, nor wild-type level of growth, cell morphology and UV resistance. Unexpectedly, we discovered that an ATPase-deficient mutant (K230D) is not able to support iSDR to a full extent, although it can restore normal growth rate and UV resistance as well as non-filamentous morphology in priA1::kan mutant. K230D was previously reported to be fully functional in assembly of the phiX174-type primosome at a single-stranded n'-pas. Our results indicate that ATP hydrolysis/ helicase activity of PriA may be specifically required for DNA replication from recombination intermediates in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号