首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaerobic degradation of m-cresol was studied in a denitrifying bacterium. In the initial studies, hypothetical intermediates of m-cresol degradation were tested in growth experiments and in adaptation studies with dense cell suspensions. Results suggested a degradation of m-cresol via 3-hydroxybenzoate. To verify this, the degradation of m-cresol was followed in concentrated cell suspensions in the presence of metabolic inhibitors. Fluoroacetate treatment resulted in the transient accumulation of substantial amounts of 3-hydroxybenzoate. In the presence of iodoacetamide, not only was 3-hydroxybenzoate transiently formed, but benzoate was also accumulated. These findings support a degradation of m-cresol via initial anaerobic methyl oxidation to 3-hydroxybenzoate, followed by reductive dehydroxylation to benzoate or benzoyl-CoA. Studies with extracts of m-cresol-grown cells showed the presence of several enzyme activities to be postulated for this pathway. No evidence was found for a carboxylation, hydroxylation of the aromatic ring, or direct ring reduction as the initial step in m-cresol metabolism. Received: 29 November 1994 / Accepted: 7 March 1995  相似文献   

2.
A novel denitrifying bacterium, strain 72Chol, was enriched and isolated under strictly anoxic conditions on cholesterol as sole electron donor and carbon source. Strain 72Chol grew on cholesterol with oxygen or nitrate as electron acceptor. Strictly anaerobic growth in the absence of oxygen was demonstrated using chemically reduced culture media. During anaerobic growth, nitrate was initially reduced to nitrite. At low nitrate concentrations, nitrite was further reduced to nitrogen gas. Ammonia was assimilated. The degradation balance measured in cholesterol-limited cultures and the amounts of carbon dioxide, nitrite, and nitrogen gas formed during the microbial process indicated a complete oxidation of cholesterol to carbon dioxide. A phylogenetic comparison based on total 16S rDNA sequence analysis indicated that the isolated micro-organism, strain 72Chol, belongs to the β2-subgroup in the Proteobacteria and is related to Rhodocyclus, Thauera, and Azoarcus species. Received: 16 July 1996 / Accepted: 5 December 1996  相似文献   

3.
A Gram-negative nitrate-reducing bacterium, strain Asl-3, was isolated from activated sludge with nitrate and 3-hydroxybenzoate as sole source of carbon and energy. The new isolate was facultatively anaerobic, catalase- and oxidase-positive and polarly monotrichously flagellated. In addition to nitrate, nitrite, N2O, and O2 served as electron acceptors. Growth with 3-hydroxybenzoate and nitrate was biphasic: nitrate was completely reduced to nitrite before nitrite reduction to N2 started. Benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, protocatechuate or phenyl-acetate served as electron and carbon source under aerobic and anaerobic conditions. During growth with excess carbon source, poly-beta-hydroxybutyrate was formed. These characteristics allow the affiliation of strain Asl-3 with the family Pseudomonadaceae. Analogous to the pathway of 4-hydroxybenzoate degradation in other bacteria, the initial step in anaerobic 3-hydroxybenzoate degradation by this organism was activation to 3-hydroxy-benzoyl-CoA in an ATP-consuming reaction. Cell extracts of 3-hydroxybenzoate-grown cells exhibited 3-hydroxybenzoyl-CoA synthetase activity of 190 nmol min-1 mg protein-1 as well as benzoyl-CoA synthetase activity of 86 nmol min-1 mg protein-1. A reductive dehydroxylation of 3-hydroxybenzoyl-CoA could not be demonstrated due to rapid hydrolysis of chemically synthesized 3-hydroxybenzoyl-CoA by cell extracts.  相似文献   

4.
From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.  相似文献   

5.
Three strains of denitrifying bacteria were anaerobically enriched and isolated from oxic or anoxic habitats with cyclohexanol or cyclohexanone as sole electron donor and carbon source and with nitrate as electron acceptor. The bacteria were facultatively anaerobic, Gramnegative and metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as terminal electron acceptor. Cyclohexanol and cyclohexanone were degraded both anaerobically and aerobically. Aromatic compounds were oxidized in the presence of molecular oxygen only. One of the bacterial strains was further characterized. During anaerobic cyclohexanol degradation approximately 40% of the substrate was oxidized to phenol, which accumulated as dead-endproduct in the growth medium; 60% of cyclohexanol was completely oxidized to CO2 and assimilated, respectively. In addition to phenol formation, transient accumulation of cyclohexanone, 2-cyclohexenone and 1,3-cyclohexanedione was observed. Based on these findings we propose a pathway for anaerobic cyclohexanol degradation involving these intermediates.  相似文献   

6.
Anaerobic degradation of toluene by a denitrifying bacterium   总被引:12,自引:0,他引:12  
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

7.
Several denitrifying Pseudomonas spp., isolated with various aromatic compounds, were tested for the ability to degrade toluene in the absence of molecular oxygen. Four out of seven strains were able to degrade toluene in the presence of N2O. More than 50% of the 14C from ring-labelled toluene was released as CO2, and up to 37% was assimilated into cell material. Furthermore it was demonstrated for two strains that they were able to grow on toluene as the sole carbon and energy source in the presence of N2O. Suspensions of cells pre-grown on toluene degraded toluene, benzaldehyde or benzoate without a lag phase and without accumulation of intermediates. p-Cresol, p-hydroxybenzylalcohol, p-hydroxybenzaldehyde or p-hydroxybenzoate was degraded much slower or only after distinct lag times. In the presence of fluoroacetate [14C]toluene was transformed to [14C]benzoate, which suggests that anaerobic toluene degradation proceeds through oxidation of the methyl side chain to benzoate.  相似文献   

8.
Anaerobic degradation of toluene by a denitrifying bacterium.   总被引:12,自引:11,他引:1       下载免费PDF全文
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

9.
Alcaligenes defragrans strains denitrify on monoterpenes with an unsaturated hydrocarbon structure. A new cometabolic reaction, the formation of isoterpinolene from isolimonene, was detected in cultures that grew on a monoterpene. The biotransformation of isolimonene, a monocyclic monoterpene with a sp3-hybridized C1 atom of the menthane skeleton, contrasts with the complete mineralization of monoterpenes with a sp2-hybridized C1 atom. This selectivity indicates a demand for a sp2-hybridized C1 atom as structural property for monoterpenes that can be oxidized by A. defragrans.  相似文献   

10.
Monofluoro- and monochlorobenzoates did not support the growth of Pseudomonas PN-1, either aerobically or anaerobically (nitrate respiration), when supplied as sole sources of carbon and energy. Anaerobic growth yields on nonfluorinated substrates were increased by p-fluorobenzoate (pFBz) with a utilization of pFBz and release of F-. Cell suspensions grown on p-hydroxybenzoate (pOHBz), either aerobically or anaerobically, only degraded o-fluorobenzoate (oFBz) and pFBz of the monohalogenated benzoates tested. Both compounds were catabolized anaerobically, but not aerobically, with a release of F-. oFBz was immediately attacked, by cells grown anaerobically on pOHBz, whereas pFBz was only degraded after a lag phase; chloramphenicol inhibited the breakdown of pFBz, but not oFBz, thereby indicating the need for additional enzyme(s) to attack pFBz. o-Chlorobenzoate (oClBz) inhibited the anaerobic, but not aerobic, oxidation of pOHBz and stopped anaerobic growth on pOHBz. A mutant was isolated which metabolized pOHBz in the presence of oClBz but it was defective in its anaerobic metabolism of benzoate (Bz). Comparative studies, of the mutant and Pseudomonas PN-1, indicated that the mutation involved a metabolic site common to Bz, oClBz and the monofluorobenzoates. The dependence of the oxidation rate of Bz and oFBz on their concentrations at a millimolar level, in the mutant but not Pseudomonas PN-1, suggested a defect at the permease level: the uptake of 14C-labelled Bz by the mutant was also concentration-dependent. The response of the organism to the inhibitory effect of oClBz on pOHBz catabolism is discussed with respect to its significance in the perturbation of natural degradative processes by unnatural chemicals in the environment.Non-common abbreviations Bz benzoate - pOHBz p-hydroxybenzoate - oFBz o-fluorobenzoate - mFBz m-fluorobenzoate - pFBz p-fluorobenzoate - oClBz o-chlorobenzoate  相似文献   

11.
Abstract Denitrifying enrichment cultures utilizing monochlorinated benzoic acids as a carbon source were established using sediments and soils from a variety of sources as inocula. Enrichment cultures from most of the sites readily degraded 3- and 4chlorobenzoate within 2–4 weeks. Upon refeeding, 3- and 4-chlorobenzoate were rapidly depleted, and stable denitrifying cultures were obtained by repeated dilution and refeeding of the substrates. 2-Chlorobenzoate, however, was only slowly metabolized and this activity was only observed in a few sites. Denitrifying consortia were maintained on either 3- or 4chlorobenzoate as the sole source of carbon and energy and chlorobenzoate utilization was dependent on denitrification. These cultures were also capable of utilizing the corresponding brominated and iodinated benzoic acids, but the activity was specific to the position of the halogen substituent. Removal of halogen was stoichiometric, indicating that dehalogenation occurred at some step in metabolism.  相似文献   

12.
Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16SrDNA revealed a close relationship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluence, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstrated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, strain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methylbenzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.  相似文献   

13.
14.
New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications.  相似文献   

15.
Anaerobic degradation of cresols by denitrifying bacteria   总被引:15,自引:0,他引:15  
The initial reactions in anaerobic metablism of methylphenols (cresols) and dimethylphenols were studied with denitrifying bacteria. A newly isolated strain, possibly a Paracoccus sp., was able to grow on o-or p-cresol as sole organic substrate with a generation time of 11 h; o-or p-cresol was completely oxidized to CO2 with nitrate being reduced to N2. A denitrifying Pseudomonas-like strain oxidized m-or p-cresol as the sole organic growth substrate completely to CO2 with a generation time of 14 h. Demonstration of intermediates and/or in vitro measurement of enzyme activities suggest the following enzymatic steps:(1) p-Cresol was metabolized by both strains via benzoyl-CoA as central intermediate as follows: p-cresol 4-OH-benzaldehyde 4-OH-benzoate 4-OH-benzoly-CoA benzoyl-CoA. Oxidation of the methyl group to 4-OH-benzaldehyde was catalyzed by p-cresol methylhydroxylase. After oxidation of the aldehyde to 4-OH-benzoate, 4-OH-benzoyl-CoA is formed by 4-OH-benzoyl-CoA synthetase; subsequent reductive dehydroxylation of 4-OH-benzoyl-CoA to benzoyl-CoA is catalyzed by 4-OH-benzoyl-CoA reductase (dehydroxylating).(2) o-Cresol was metabolized in the Paracoccus-like strain via 3-CH3-benzoyl-CoA as central intermediate as follows: o-cresol 4-OH-3-CH3-benzoate 4-OH-3-CH3-benzoyl-CoA 3-CH3-benzoyl-CoA. The following enzymes were demonstrated: (a) An enzyme catalyzing an isototope exchange reaction between 14CO2 and the carboxyl of 4-OH-3-CH3-benzoate; this activity is thought to be a partial reaction catalyzed by an o-cresol carboxylase. (b) 4-OH-3-CH3-benzoyl-CoA synthetase (AMP-forming) activating the carboxylation product 4-OH-3-CH3-benzoate to its coenzyme A thioester. (c) 4-OH-3-CH3-benzoyl-CoA reductase (dehydroxylating) catalyzing the reductive dehydroxylation of the 4-hydroxyl group with reduced benzyl viologen as electron donor to yield 3-CH3-benzoyl-CoA. This thioester may also be formed by action of a coenzyme A ligase when 3-CH3-benzoate is metabolized. 2,4-Dimethylphenol was metabolized via 4-OH-3-CH3-benzoate and further to 3-CH3-benzoyl-CoA.(3) The initial reactions of anaerobic metabolism of m-cresol in the Pseudomonas-like strain were not resolved. No indication for the oxidation of the methyl group nor for the carboxylation of m-cresol was found. In contrast, 2,4-and 3,4-dimethylphenol were oxidized to 4-OH-3-CH3-and 4-OH-2-CH3-benzoate, respectively, probably initiated by p-cresol methylhydroxylase; however, these compounds were not metabolized further.The hydroxyl and methyl groups are abbreviated as OH-and CH3-, respectively  相似文献   

16.
A new strictly anaerobic, gram-negative, nonsporeforming bacterium, Strain PerGlx1, was enriched and isolated from marine sediment samples with glyoxylate as sole carbon and energy source. The guanineplus-cytosine content of the DNA was 44.1±0.2 mol %. Glyoxylate was utilized as the only substrate and was stoichiometrically degraded to carbon dioxide, hydrogen, and glycolate. An acetyl-CoA and ADP-dependent glyoxylate converting enzyme activity, malic enzyme, and pyruvate synthase were found at activities sufficient for growth (0.25 U x mg protein-1). These findings allow to design a new degradation pathway for glyoxylate: glyoxylate is condensed with acetyl-CoA to form malyl-CoA; the free energy of the thioester linkage in malyl-CoA is conserved by substrate level phosphorylation. Part of the electrons released during glyoxylate oxidation to CO2 reduce a small fraction of glyoxylate to glycolate.  相似文献   

17.
Although, there have been many published bacterial strains aerobically degrading the heterocyclic amine compounds, only one strain to date has been reported to degrade pyrrolidine under denitrifying conditions. In this study, denitrifying bacteria degrading pyrrolidine and piperidine were isolated from diverse geological and ecological origins through selective enrichment procedures. Based on the comparative sequence results of 16S rRNA genes, 30 heterocyclic amine-degrading isolates were grouped into ten distinct phylotypes belonging to the genera Thauera, Castellaniella, Rhizobium, or Paracoccus of the phylum Proteobacteria. The representative isolates of individual phylotypes were characterized by phylogenetic, phenotypic and chemotaxonomical traits, and dissimilatory nitrite reductase gene (nirK and nirS). All isolates completely degraded pyrrolidine and piperidine under both aerobic and anaerobic conditions. The anaerobic degradations were coupled to nitrate reduction. A metabolic pathway for the anaerobic degradation of pyrrolidine was proposed on the basis of enzyme activities implicated in pyrrolidine metabolism from three isolates. The three key pyrrolidine-metabolizing enzymes pyrrolidine dehydrogenase, γ-aminobutyrate/α-ketoglutarate aminotransferase, and succinic semialdehyde dehydrogenase, were induced by heterocyclic amines under denitrifying conditions. They were also induced in cells grown aerobically on heterocyclic amines, suggesting that the anaerobic degradation of pyrrolidine shares the pathway with aerobic degradation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
Anaerobic oxidation of p-cresol by a denitrifying bacterium   总被引:2,自引:0,他引:2  
Metabolism of p-cresol (pCr) under nitrate-reducing conditions is mediated by the denitrifying bacterial isolate PC-07. The methyl substituent of the substrate is oxidized anaerobically by whole-cell suspensions of PC-07 through a series of dehydrogenation and hydration reactions to yield p-hydroxybenzoate (pOHB) in stoichiometric proportions. The partially oxidized intermediates in the pathway p-hydroxybenzyl alcohol and p-hydroxybenzaldehyde can also serve as substrates for pOHB formation. Nitrate is required as the external electron acceptor and is reduced to molecular N2. Reduction of the nitrate is stoichiometric, with pCr serving as the electron donor. In addition, the molar relationship between the electron acceptor (NO3-) reduced to the electron donor oxidized decreased to approximately 2:3 and then to 1:3 when p-hydroxybenzyl alcohol or p-hydroxybenzaldehyde, respectively, served as substrates. The decreased ratios were to be expected when the partially oxidized intermediates served as substrates, because they provided correspondingly less reducing power for pOHB formation. The anaerobic oxidation of pCr by PC-07 demonstrates a mechanism whereby aromatic compounds can be transformed in anoxic environments.  相似文献   

20.
Abstract Methanogenic enrichment cultures fermented the long-chain dicarboxylates adipate, pimelate, suberate, azelate, and sebacate (C6-C10) stoichiometrically to acetate and methane. After several transfers, the cultures contained cells of only a few morphologically distinguishable types. During anaerobic degradation of dicarboxylic acids with even-numbered carbon atoms, propionate accumulated intermediately, and butyrate was the intermediate product of degradation of those with an odd number of carbon atoms. Degradation of the long-chain dicarboxylates depended strictly on the presence of hydrogenotrophic methanogens. The primary attack in these processes was β-oxidation rather than decarboxylation. A general scheme of anaerobic degradation of long-chain dicarboxylic acids has been deduced from these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号