首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heart rates were recorded from double-crested cormorant chicks during their first ever and subsequent voluntary head submergences and dives, as well as during longer dives made after the chicks were accustomed to diving. Despite variation between chicks, the cardiac response to first ever and subsequent voluntary submergence (head submergences and dives) was similar to the response observed in adult cormorants. Upon submersion the heart rate fell rapidly when pre-submersion heart rate was high (325–350 beats min−1). The heart rate established within the first second of voluntary submergence was between 230 and 285 beats min−1, well above resting heart rate (143 beats min−1). The same initial cardiac response occurred during longer dives performed after the chicks were accustomed to diving. In these dives the heart rate remained at the level established on submersion, unlike the response observed in shallow diving adult cormorants in which the heart rate declined throughout the dive. The heart rate was also monitored in a separate group of chicks in which the first exposure to water was during whole body forced submergence. Again, the observed response was similar to the adult response, although the cardiac response of chicks to forced submergence was more extreme than to voluntary submergence. Our results do not support the hypothesis that learning (by conditioning or habituation) is involved in the cardiac adjustments to voluntary submergence. It is suggested that the initial cardiac adjustments are reflex in nature and this reflex is fully developed by the first submergence event. Although the nature of this reflex pathway is obscure, cessation of breathing before submersion and the close linkage between breathing and heart rate might provide a plausible mechanism.  相似文献   

2.
Heart rates were recorded from double-crested cormorant chicks during their first ever and subsequent voluntary head submergences and dives, as well as during longer dives made after the chicks were accustomed to diving. Despite variation between chicks, the cardiac response to first ever and subsequent voluntary submergence (head submergences and dives) was similar to the response observed in adult cormorants. Upon submersion the heart rate fell rapidly when pre-submersion heart rate was high (325-350 beats min-1). The heart rate established within the first second of voluntary submergence was between 230 and 285 beats min-1, well above resting heart rate (143 beats min-1). The same initial cardiac response occurred during longer dives performed after the chicks were accustomed to diving. In these dives the heart rate remained at the level established on submersion, unlike the response observed in shallow diving adult cormorants in which the heart rate declined throughout the dive. The heart rate was also monitored in a separate group of chicks in which the first exposure to water was during whole body forced submergence. Again, the observed response was similar to the adult response, although the cardiac response of chicks to forced submergence was more extreme than to voluntary submergence. Our results do not support the hypothesis that learning (by conditioning or habituation) is involved in the cardiac adjustments to voluntary submergence. It is suggested that the initial cardiac adjustments are reflex in nature and this reflex is fully developed by the first submergence event. Although the nature of this reflex pathway is obscure, cessation of breathing before submersion and the close linkage between breathing and heart rate might provide a plausible mechanism.  相似文献   

3.
The diving ability of marine mammals is a function of how they use and store oxygen and the physiological control of ventilation, which is in turn dependent on the accumulation of CO2. To assess the influence of CO2 on physiological control of dive behaviour, we tested how increasing levels of inspired CO2 (hypercarbia) and decreasing inspired O2 (hypoxia) affected the diving metabolic rate, submergence times, and dive recovery times (time to replenish O2 stores and eliminate CO2) of freely diving Steller sea lions. We also measured changes in breathing frequency of diving and non-diving individuals. Our findings show that hypercarbia increased breathing frequency (as low as 2 % CO2), but did not affect metabolic rate, or the duration of dives or surface intervals (up to 3 % CO2). Changes in breathing rates indicated respiratory drive was altered by hypercarbia at rest, but blood CO2 levels remained below the threshold that would alter normal dive behaviour. It took the sea lions longer to remove accumulated CO2 than it did for them to replenish their O2 stores following dives (whether breathing ambient air, hypercarbia, or hypoxia). This difference between O2 and CO2 recovery times grew with increasing dive durations, increasing hypercarbia, and was greater for bout dives, suggesting there could be a build-up of CO2 load with repeated dives. Although we saw no evidence of CO2 limiting dive behaviour, the longer time required to remove CO2 may eventually exhibit control over the overall time they can spend in apnoea and overall foraging duration.  相似文献   

4.
In diving, pulmonary mechanical function is limited by the increased density of the gas breathed. Breathing cold and dry gas may cause an additional increase in airways resistance. We have measured forced vital capacity, forced expired volume in 1 s (FEV1) and forced midexpiratory flow rate (FEF25%–75%) before and after breathing dry or humid gas at 29–32°C during a standardized exercise intensity on a cycle ergometer at an ambient pressure of 3.7 MPa. The atmosphere was a helium and oxygen mixture with a density of 6.8 kg · m–3. Six professional saturation divers aged 26–37 years participated in the study. There were no significant differences in convective respiratory heat loss between the exposures. The mean evaporative heat loss was 67 W (range 59–89) breathing dry gas and 37 W (range 32–43) breathing humid gas, corresponding to water losses of 1.7 g · min–1 (range 1.5–2.2) and 0.9 g · min–1 (range 0.8–1.1), respectively. There was a significant reduction in FEV1 of 4.6 (SD 3.6)% (P<0.05), and in FEF25%–75% of 5.8 (SD 4.7)% (P<0.05) after breathing dry gas. There were no changes after breathing humid gas. By warming and humidifying the gas breathed in deep saturation diving bronchoconstriction may be prevented.  相似文献   

5.
The diving capacity of marine mammals is typically defined by the aerobic dive limit (ADL) which, in lieu of direct measurements, can be calculated (cADL) from total body oxygen stores (TBO) and diving metabolic rate (DMR). To estimate cADL, we measured blood oxygen stores, and combined this with diving oxygen consumption rates (VO2) recorded from 4 trained Steller sea lions diving in the open ocean to depths of 10 or 40 m. We also examined the effect of diving exercise on O2 stores by comparing blood O2 stores of our diving animals to non-diving individuals at an aquarium. Mass-specific blood volume of the non-diving individuals was higher in the winter than in summer, but there was no overall difference in blood O2 stores between the diving and non-diving groups. Estimated TBO (35.9 ml O2 kg?1) was slightly lower than previously reported for Steller sea lions and other Otariids. Calculated ADL was 3.0 min (based on an average DMR of 2.24 L O2 min?1) and was significantly shorter than the average 4.4 min dives our study animals performed when making single long dives—but was similar to the times recorded during diving bouts (a series of 4 dives followed by a recovery period on the surface), as well as the dive times of wild animals. Our study is the first to estimate cADL based on direct measures of VO2 and blood oxygen stores for an Otariid and indicates they have a much shorter ADL than previously thought.  相似文献   

6.
Unrestrained Amazonian manatees (Trichechus inunguis) maintained a constant heart rate during diving and exhibited a slight tachycardia during breathing. 'Forcing' the manatees to dive caused a marked bradycardia. They exhibited a more pronounced tachycardia during breathing after 'forced' dives and hyperventilated during recovery dives. Manatees are capable of dives exceeding 10 min duration without having to resport to anaerobic metabolism, and even after 10 min dives recover within 3-4 short dives. The ability of manatees to make long dives, in spite of relatively poor O2 stores, is due to their low metabolic rate, while the rapid recovery is aided by their high CO2 stores which minimizes CO2 storage in the body. In manatees the changes in alveolar O2 and CO2 pressure (PAO2 and PACO2) in relation to dive time are slower and more variable than in other marine mammals. The lower rate of change is probably due to the manatees' reduced metabolic rate, while the greater variability is due to their breathing pattern, in which both ventilation and body gas stores influence alveolar gases.  相似文献   

7.
Diving birds have to overcome buoyancy, especially when diving in shallow water. Darters and anhingas (Anhingidae) are specialist shallow-water divers, with adaptations for reducing their buoyancy. Compared to closely-related cormorants (Phalacrocoracidae), darters have fully wettable plumage, smaller air sacs and denser bones. A previous study of darter diving behaviour reported no relationship between dive duration and water depth, contrary to optimal dive models. In this study I provide more extensive observations of African darters Anhinga melanogaster rufa diving in water<5 m deep at two sites. Dive duration increases with water depth at both sites, but the relationship is weak. Dives were longer than dives by cormorants in water of similar depth (max 108 s in water 2.5 m deep), with dives of up to 68 s observed in water<0.5 m deep. Initial dives in a bout were shorter than expected, possibly because their plumage was not fully saturated. Dive efficiency (dive:rest ratio) was 5–6, greater than cormorants (2.7±0.4 for 18 species) and other families of diving birds (average 0.2–4.3). Post-dive recovery periods increased with dive duration, but only slowly, resulting in a strong increase in efficiency with dive duration. All dives are likely to fall within the theoretical anaerobic dive limit. Foraging bouts were short (17.8±4.3 min) compared to cormorants, with birds spending 80±5% of time underwater. Darters take advantage of their low buoyancy to forage efficiently in shallow water, and their slow, stealthy dives are qualitatively different from those of other diving birds. However, they are forced to limit the duration of foraging bouts by increased thermoregulatory costs associated with wettable plumage.  相似文献   

8.
The purpose of the present study was to examine the effect of maximal arm exercise on the skin blood circulation of the paralyzed lower limbs in persons with spinal cord injury (PSCI). Eight male PSCI with complete lesions located between T3 and L1 performed graded maximal arm-cranking exercise (MACE) to exhaustion. The skin blood flux at the thigh (SBFT) and that at the calf (SBFC) were monitored using laser-Doppler flowmeter at rest and for 15 s immediately after the MACE. The subject's mean peak oxygen uptake and peak heart rate was 1.41 ± 0.22 1·min−1 and 171.6 ± 19.2 beats·min−1, respectively. No PSCI showed any increase in either SBFT or SBFC after the MACE, when compared with the values at rest. These results suggest that the blood circulation of the skin in the paralyzed lower limbs in PSCI is unaffected by the MACE.  相似文献   

9.
Most teleost fish reduce heart rate when exposed to acute hypoxia. This hypoxic bradycardia has been characterised for many fish species, but it remains uncertain whether this reflex contributes to the maintenance of oxygen uptake in hypoxia. Here we describe the effects of inhibiting the bradycardia on oxygen consumption (MO2), standard metabolic rate (SMR) and the critical oxygen partial pressure for regulation of SMR in hypoxia (Pcrit) in European eels Anguilla anguilla (mean ± SEM mass 528 ± 36 g; n = 14). Eels were instrumented with a Transonic flow probe around the ventral aorta to measure cardiac output (Q) and heart rate (f H). MO2 was then measured by intermittent closed respirometry during sequential exposure to various levels of increasing hypoxia, to determine Pcrit. Each fish was studied before and after abolition of reflex bradycardia by intraperitoneal injection of the muscarinic antagonist atropine (5 mg kg−1). In the untreated eels, f H fell from 39.0 ± 4.3 min−1 in normoxia to 14.8 ± 5.2 min−1 at the deepest level of hypoxia (2 kPa), and this was associated with a decline in Q, from 7.5 ± 0.8 mL min−1 kg−1 to 3.3 ± 0.7 mL min−1 kg−1 in normoxia versus deepest hypoxia, respectively. Atropine had no effect on SMR, which was 16.0 ± 1.8 μmol O2 kg−1 min−1 in control versus 16.8 ± 0.8 μmol O2 kg−1 min−1 following treatment with atropine. Atropine also had no significant effect on normoxic f H or Q in the eel, but completely abolished the bradycardia and associated decline in Q during progressive hypoxia. This pharmacological inhibition of the cardiac responses to hypoxia was, however, without affect on Pcrit, which was 11.7 ± 1.3 versus 12.5 ± 1.5 kPa in control versus atropinised eels, respectively. These results indicate, therefore, that reflex bradycardia does not contribute to maintenance of MO2 and regulation of SMR by the European eel in hypoxia.  相似文献   

10.
The aims of the present study were: (1) to assess aerobic metabolism in paraplegic (P) athletes (spinal lesion level, T4–L3) by means of peak oxygen uptake (O2peak) and ventilatory threshold (VT), and (2) to determine the nature of exercise limitation in these athletes by means of cardioventilatory responses at peak exercise. Eight P athletes underwent conventional spirographic measurements and then performed an incremental wheelchair exercise on an adapted treadmill. Ventilatory data were collected every minute using an automated metabolic system: ventilation (l · min−1), oxygen uptake (O2, l · min−1, ml · min−1 · kg−1), carbon dioxide production (CO2, ml · min−1), respiratory exchange ratio, breathing frequency and tidal volume. Heart rate (HR, beats · min−1) was collected with the aid of a standard electrocardiogram. O2peak was determined using conventional criteria. VT was determined by the breakpoint in the CO2O2 relationship, and is expressed as the absolute VT (O2, ml · min−1 · kg−1) and relative VT (percentage of O2peak). Spirometric values and cardioventilatory responses at rest and at peak exercise allowed the measurement of ventilatory reserve (VR), heart rate reserve (HRr), heart rate response (HRR), and O2 pulse (O2 P). Results showed a O2peak value of 40.6 (2.5) ml · min−1 · kg−1, an absolute VT detected at 23.1 (1.5) ml · min−1 · kg−1 O2 and a relative VT at 56.4 (2.2)% O2peak. HRr [15.8 (3.2) beats · min−1], HRR [48.6 (4.3) beat · l−1], and O2 P [0.23 (0.02) ml · kg−1 · beat−1] were normal, whereas VR at peak exercise [42.7 (2.4)%] was increased. As wheelchair exercise excluded the use of an able-bodied (AB) control group, we compared our O2peak and VT results with those for other P subjects and AB controls reported in the literature, and we compared our cardioventilatory responses with those for respiratory and cardiac patients. The low O2peak values obtained compared with subject values obtained during an arm-crank exercise may be due to a reduced active muscle mass. Absolute VT was somewhat comparable to that of AB subjects, mainly due to the similar muscle mass involved in wheelchair and arm-crank exercise by P and AB subjects, respectively. The increased VR, as reported in patients with chronic heart failure, suggested that P athletes exhibited cardiac limitation at peak exercise, and this contributed to the lower O2peak measured in these subjects. Accepted: 22 April 1997  相似文献   

11.
The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO2) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO2 and swimming speeds. At slow speed (0.65 BL s−1), progressive aquatic hypoxia triggered the first breath at a mean PO2 of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO2 of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min−1, ABO PO2 was 10.9 kPa, breath volume was 23.8 ml kg−1, rate of oxygen uptake from the ABO was 1.19 ml kg−1 min−1, and oxygen uptake per breath was 2.32 ml kg−1. At the fastest experimental speed (2.4 BL s−1) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg−1 min−1, through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO2 (1.7–26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors.  相似文献   

12.
Summary Green sea turtles (Chelonia mydas) are well known as endurance swimmers and divers. Physiological correlates of these traits were studied in 9 adult sea turtles (mean body mass=87 kg) at a body temperature of 25°C. The respiratory properties of the blood were similar to those of other turtles except for a higher oxygen affinity (P 50=18.2 Torr, pH 7.6), which may be an allometric function. Resting, systemic blood flow, calculated from the Fick principle was 21.5 ml·kg−1. min−1, similar to values reported for other turtles. Pulmonary blood flow, measured by mass spectrometry of acetylene uptake in the lungs was 24.0 ml·kg−1·min−1, not significantly different from the calculated systemic flow. Other evidence of a small (net) intracardiac shunt is the high arterial saturation (ca. 90%) of arterial blood. This distinctive feature of O2 transport inC. mydas provides an content difference of 4.1 ml· dl−1. This results in a relatively low blood convection requirement at rest =24.4 mlbtps·mlstpd −1), similar to that for many mammals. This would favor a high maximum O2 uptake, as measured by others in this species. The relatively high O2 affinity of blood in this species could be adaptive to “loading” O2 during intermittent breathing while swimming and to utilizing the lung O2 store during the progressive hypoxia of diving.  相似文献   

13.
A wet suit may not provide adequate thermal protection when diving in moderately cold water (17–18°C), and any resultant mild hypothermia may impair performance during prolonged diving. We studied heat exchange during a dive to a depth of 5 m in sea water (17–18.5°C) in divers wearing a full wet suit and using closed-circuit oxygen breathing apparatus. Eight fin swimmers dived for 3.1 h and six underwater scooter (UWS) divers propelled themselves through the water for 3.7 h. The measurements taken throughout the dive were the oxygen pressure in the cylinder and skin and rectal temperatures (T re). Each subject also completed a cold score questionnaire. The T re decreased continuously in all subjects. Oxygen consumption in the fin divers (1.40 l · min−1) was higher than that of the UWS divers (1.05 l · min−1). The mean total insulation was 0.087°C · m2 · W−1 in both groups. Mean body insulation was 37% of the total insulation (suit insulation was 63%). The reduction in T re over the 1st hour was related to subcutaneous fat thickness. There was a correlation between cold score and T re at the end of 1 h, but not after that. A full wet suit does not appear to provide adequate thermal protection when diving in moderately cold water. Accepted: 21 January 1997  相似文献   

14.
Bradycardia is an important component of the dive response, yet little is known about this response in immature marine mammals. To determine if diving bradycardia improves with age, cardiac patterns from trained immature and mature bottlenose dolphins (Tursiops truncatus) were recorded during three conditions (stationary respiration, voluntary breath-hold, and shallow diving). Maximum (mean: 117±1 beats·min–1) and resting (mean: 101±5 beats·min–1) heart rate (HR) at the water surface were similar regardless of age. All dolphins lowered HR in response to apnea; mean steady state breath-hold HR was not correlated with age. However, the ability to reduce HR while diving improved with age. Minimum and mean steady state HR during diving were highest for calves. For example, 1.5–3.5-year-old calves had significantly higher mean steady state diving HR (51±1 beats·min–1) than 3.5–5.5-year-old juveniles (44±1 beats·min–1). As a result, older dolphins demonstrated greater overall reductions in HR during diving. Longitudinal studies concur; the ability to reduce HR improved as individual calves matured. Thus, although newly weaned calves as young as 1.7 years exhibit elements of cardiac control, the capacity to reduce HR while diving improves with maturation up to 3.5 years postpartum. Limited ability for bradycardia may partially explain the short dive durations observed for immature marine mammals.Abbreviations ADL aerobic dive limit - cADL calculated aerobic dive limit - ECG electrocardiogram - HR heart rate - TDR time–depth recorder Communicated by L.C.-H. Wang  相似文献   

15.
 To investigate the role of fluid shifts during the short-term adjustment to acute hypobaric hypoxia (AHH), the changes in lower limb (LV) and forearm volumes (FV) were measured using a strain-gauge plethysmograph technique in ten healthy volunteers exposed to different altitudes (450 m, 2500 m, 3500 m, 4500 m) in a hypobaric chamber. Arterial blood pressure, heart rate, arterial oxygen saturation (S aO2), endtidal gases, minute ventilation and urine flow were also determined. A control experiment was performed with an analogous protocol under normobaric normoxic conditions. The results showed mean decreases both in LV and FV of −0.52 (SD 0.39) ml · 100 ml−1 and −0.65 (SD 0.32) ml · 100 ml−1, respectively, in the hypoxia experiments [controls: LV −0.28 (SD 0.37), FV −0.41 (SD 0.47) ml · 100 ml−1]. Descent to normoxia resulted in further small but not significant decreases in mean LV [−0.02 (SD 0.11) ml · 100 ml−1], whereas mean FV tended to increase slightly [ + 0.02 (SD 0.14) ml · 100 ml−1]; in the control experiments mean LV and FV decreased continuously during the corresponding times [−0.19 (SD 0.31), −0.18 (SD 0.10) ml · 100 ml−1, respectively]. During the whole AHH, mean urine flow increased significantly from 0.84 (SD 0.41) ml · min−1 to 3.29 (SD 1.43) ml · min−1 in contrast to the control conditions. We concluded that peripheral fluid volume shifts form a part of the hypoxia-induced acute cardiovascular changes at high altitude. In contrast to the often reported formation of peripheral oedema after prolonged exposure to hypobaric hypoxia, the results provided no evidence for the development of peripheral oedema during acute induction to high altitude. However, the marked increase in interindividual variance in S aO2 and urine flow points to the appearance of the first differences in the short-term adjustment even after 2 h of acute hypobaric hypoxia. Accepted: 27 August 1996  相似文献   

16.
Models of diving optimality qualitatively predict diving behaviours of aquatic birds and mammals. However, none of them has been empirically tested. We examined the quantitative predictions of optimal diving models by combining cumulative oxygen uptake curves with estimates of power costs during the dives of six tufted ducks, Aythya fuligula. The effects of differing foraging costs on dive duration and rate of oxygen uptake (VO2up) at the surface were measured during bouts of voluntary dives to a food tray. The birds were trained to surface into a respirometer after each dive, so that changes in VO2up over time could be measured. The tray held either just food or closely packed stones on top of the food to make foraging energetically more costly. In contrast to predictions from the Houston & Carbone model, foraging time (tf) increased after dives incorporating higher foraging energy costs but surface time (ts) remained the same. While optimal diving models have assumed that the cumulative oxygen uptake curve is fixed, VO2up increased when the energy cost of the dive increased. The optimal breathing model quantitatively predicted ts in both conditions and oxygen consumption during foraging (m2tf) in the control condition, for the mean of all ducks. This offers evidence that the ducks were diving optimally and supports the fundamentals of optimal diving theory. However, the model did not consistently predictts or m2tf for individual birds. We discuss the limits of optimal foraging models for air-breathing divers caused by individual variation. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

17.
Like humans, the heart rate (HR) of anesthetized rats immersed in CO2-water is lower than that when immersed in tap water at the same temperature. To investigate the afferent signal pathway in the mechanism of HR reduction, Wistar rats were anesthetized with urethane and then the spinal cord was transected between T4 and T5. The animals were immersed up to the axilla in a bathtub of tap-water (CO2 contents: 10–20 mg·l−1) or of CO2-water (965–1,400 mg·l−1) at 35°C while recording HR, arterial blood pressure, and arterial blood gas parameters (PaCO2, PaO2, pH). Arterial blood gas parameters did not change during immersion, irrespective of CO2 concentration of the bath water, whereas the HR was reduced in the CO2-water bath. The inhalation of CO2-mixed gas (5 % CO2, 20 % O2, 75 % N2) resulted in increased levels of blood gases and an increased HR during immersion in all types of water tested. The HR reduction observed in sham transected control animals immersed in CO2-water disappeared after subsequent spinal cord transection. These results show that the dominant afferent signal pathway to the brain, which is involved in inducing the reduced HR during immersion in CO2-water, is located in the neuronal route and not in the bloodstream.  相似文献   

18.
  • 1.1. Both the small riparian skink Sphenomorphus quoyii and its completely terrestrial relative Ctenotus robustus respond to forced submergence with instantaneous bradycardia.
  • 2.2. The strength of the bradycardia was affected by water temperature and fear. Dives into hot (30°C) water produced weak and erratic bradycardia compared to dives into cold (19.5°C) water. For S. quoyii the strongest bradycardia occurred when submergence took place in water at a lower temperature than the pre-dive body temperature.
  • 3.3. Upon emergence both species of skink exhibited elevated heart rates and breathing rates while heating from 19.5 to 30°C, compared to heating at rest. The increased heart and breathing rates probably act to replenish depleted oxygen stores and remove any lactate. Increased heart and ventilation rates are not indicators of physiological thermoregulation in this case.
  • 4.4. Both lizard species exhibited higher heart rates and ventilation frequencies during heating than cooling.
  • 5.5. Compared to its terrestrial relative, S. quoyii does not appear to possess any major thermoregulatory, ventilatory or cardiovascular adaptations to diving. However, very small reptiles may be generally preadapted to use the water to avoid predators.
  相似文献   

19.
The purpose of the present study was to investigate the effect of exercise induced hyperventilation and hypocapnia on airway resistance (R aw), and to try to answer the question whether a reduction of R aw is a mechanism contributing to the increase of endurance time associated with a reduction of exercise induced hyperventilation as for example has been observed after respiratory training. Eight healthy volunteers of both sexes participated in the study. Cycling endurance tests (CET) at 223 (SD 47) W, i.e. at 74 (SD 5)% of the subject's peak exercise intensity, breathing endurance tests and body plethysmograph measurements of pre- and postexercise R aw were carried out before and after a 4-week period of respiratory training. In one of the two CET before the respiratory training CO2 was added to the inspired air to keep its end-tidal concentration at 5.4% to avoid hyperventilatory hypocapnia (CO2-test); the other test was the control. The pre-exercise values of specific expiratory R aw were 8.1 (SD 2.8), 6.8 (SD 2.6) and 8.0 (SD 2.1) cm H2O · s and the postexercise values were 8.5 (SD 2.6), 7.4 (SD 1.9) and 8.0 (SD 2.7) cm H2O · s for control CET, CO2-CET and CET after respiratory training, respectively, all differences between these tests being nonsignificant. The respiratory training significantly increased the respiratory endurance time during breathing of 70% of maximal voluntary ventilation from 5.8 (SD 2.9) min to 26.7 (SD 12.5) min. Mean values of the cycling endurance time (t cend) were 22.7 (SD 6.5) min in the control, 19.4 (SD 5.4) min in the CO2-test and 18.4 (SD 6.0) min after respiratory training. Mean values of ventilation ( E) during the last 3␣min of CET were 123 (SD 35.8) l · min−1 in the control, 133.5 (SD 35.1) l · min−1 in the CO2-test and 130.9 (SD 29.1) l · min−1 after respiratory training. In fact, six subjects ventilated more and cycled for a shorter time, whereas two subjects ventilated less and cycled for a longer time after the respiratory training than in the control CET. In general, the subjects cycled longer the lower the E, if all three CET are compared. It is concluded that R aw measured immediately after exercise is independent of exercise-induced hyperventilation and hypocapnia and is probably not involved in limiting t cend, and that t cend at a given exercise intensity is shorter when E is higher, no matter whether the higher E occurs before or after respiratory training or after CO2 inhalation. Accepted: 11 September 1996  相似文献   

20.
Tufted ducks Aythya fuligula do not control buoyancy during diving   总被引:1,自引:0,他引:1  
Work against buoyancy during submergence is a large component of the energy costs for shallow diving ducks. For penguins, buoyancy is less of a problem, however they still seem to trade‐off levels of oxygen stores against the costs and benefits of buoyant force during descent and ascent. This trade‐off is presumably achieved by increasing air sac volume and hence pre‐dive buoyancy (Bpre) when diving deeper. Tufted ducks, Aythya fuligula, almost always dive with nearly full oxygen stores so these cannot be increased. However, the high natural buoyancy of tufted ducks guarantees a passive ascent, so they might be expected to decrease Bpre before particularly deep, long dives to reduce the energy costs of diving. Body heat lost to the water can also be a cause of substantial energy expenditure during a dive, both through dissipation to the ambient environment and through the heating of ingested food and water. Thus dive depth (dd), duration and food type can influence how much heat energy is lost during a dive. The present study investigated the relationship between certain physiological and behavioural adjustments by tufted ducks to dd and food type. Changes in Bpre, deep body temperature (Tb) and dive time budgeting of four ducks were measured when diving to two different depths (1.5 and 5.7 m), and for two types of food (mussels and mealworms). The hypothesis was that in tufted ducks, Bpre decreases as dd increases. The ducks did not change Bpre in response to different diving depths, and thus the hypothesis was rejected. Tb was largely unaffected by dives to either depth. However, diving behaviour changed at the greater dd, including an increase in dive duration and vertical descent speed. Behaviour also changed depending on the food type, including an increase in foraging duration and vertical descent speed when mussels were present. Behavioural changes seem to represent the major adjustment made by tufted ducks in response to changes in their diving environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号