首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathophysiology of auditory hallucination, a common symptom of schizophrenia, has yet been understood, but during auditory hallucination, primary auditory cortex (A1) shows paradoxical responses. When auditory stimuli are absent, A1 becomes hyperactive, while A1 responses to auditory stimuli are reduced. Such activation pattern of A1 responses during auditory hallucination is consistent with aberrant gamma rhythms in schizophrenia observed during auditory tasks, raising the possibility that the pathology underlying abnormal gamma rhythms can account for auditory hallucination. Moreover, A1 receives top-down signals in the gamma frequency band from an adjacent association area (Par2), and cholinergic modulation regulates interactions between A1 and Par2. In this study, we utilized a computational model of A1 to ask if disrupted cholinergic modulation could underlie abnormal gamma rhythms in schizophrenia. Furthermore, based on our simulation results, we propose potential pathology by which A1 can directly contribute to auditory hallucination.  相似文献   

2.
Some fifty years after the first physiological studies of auditory attention, the field is now ripening, with exciting recent insights into the psychophysics, psychology, and neural basis of auditory attention. Current research seeks to unravel the complex interactions of pre-attentive and attentive processing of the acoustic scene, the role of auditory attention in mediating receptive-field plasticity in both auditory spatial and auditory feature processing, the contrasts and parallels between auditory and visual attention pathways and mechanisms, the interplay of bottom-up and top-down attentional mechanisms, the influential role of attention, goals, and expectations in shaping auditory processing, and the orchestration of diverse attentional effects at multiple levels from the cochlea to the cortex.  相似文献   

3.
The aim of this study was to investigate the differential time-course responses of the auditory cortex to repeated auditory stimuli in children with autism spectrum disorder (ASD) showing auditory hypersensitivity. Auditory-evoked field values were obtained from 21 boys with ASD (12 with and 9 without auditory hypersensitivity) and 15 age-matched typically developing controls. M50 dipole moments were significantly increased during the time-course study only in the ASD with auditory hypersensitivity compared with those for the other two groups. The boys having ASD with auditory hypersensitivity also showed more prolonged response duration than those in the other two groups. The response duration was significantly related to the severity of auditory hypersensitivity. We propose that auditory hypersensitivity is associated with decreased inhibitory processing, possibly resulting from an abnormal sensory gating system or dysfunction of inhibitory interneurons.  相似文献   

4.
Visual inputs can distort auditory perception, and accurate auditory processing requires the ability to detect and ignore visual input that is simultaneous and incongruent with auditory information. However, the neural basis of this auditory selection from audiovisual information is unknown, whereas integration process of audiovisual inputs is intensively researched. Here, we tested the hypothesis that the inferior frontal gyrus (IFG) and superior temporal sulcus (STS) are involved in top-down and bottom-up processing, respectively, of target auditory information from audiovisual inputs. We recorded high gamma activity (HGA), which is associated with neuronal firing in local brain regions, using electrocorticography while patients with epilepsy judged the syllable spoken by a voice while looking at a voice-congruent or -incongruent lip movement from the speaker. The STS exhibited stronger HGA if the patient was presented with information of large audiovisual incongruence than of small incongruence, especially if the auditory information was correctly identified. On the other hand, the IFG exhibited stronger HGA in trials with small audiovisual incongruence when patients correctly perceived the auditory information than when patients incorrectly perceived the auditory information due to the mismatched visual information. These results indicate that the IFG and STS have dissociated roles in selective auditory processing, and suggest that the neural basis of selective auditory processing changes dynamically in accordance with the degree of incongruity between auditory and visual information.  相似文献   

5.
Three groups of subjects (n=10) attempted to move a lever 50 cm along a track in 1.50 sec under one of three auditory feedback conditions: Fully augmented increasing auditory feedback (FAF) in which a constant level of velocity-related auditory feedback was provided for all 25 learning trials, reducing auditory feedback (FAF) in which the level of feedback was progressively reduced over the learning trials, and no auditory feedback (NAF). All subjects performed 10 trials with no auditory feedback after a 10-min rest interval. The hypothesis that acquisition of the criterion task would be facilitated under RAF compared to FAF derived partial support. It was concluded that there is sufficient evidence to justify further investigation of reducing auditory feedback as a technique of motor skill acquisition.  相似文献   

6.
白静  唐佳 《生物学杂志》2011,28(2):62-65
频率作为声音的一个重要参数,在听敏感神经元对声音进行分析和编码过程中扮演重要角色。一般用频率调谐曲线来表示听敏感神经元的频率调谐特性,并用Qn(10,30,50)值表达频率调谐曲线的尖锐程度,Qn值越大,频率调谐曲线也越尖锐,神经元的频率调谐能力越好,对频率的分辨能力越高。从听觉外周到中枢,听敏感神经元的频率调谐逐级锐化,而这种锐化主要是由听中枢的多种抑制性神经递质的作用而产生的,其中起主要作用的是GABA能和甘氨酸能神经递质。此外,离皮层调控,双侧下丘间的联合投射以及弱噪声前掩蔽等因素也会影响听敏感神经元的频率调谐特性。  相似文献   

7.
王珊  那宇鹤  冷雪  那杰 《昆虫知识》2010,47(4):652-656
昆虫的听器是一类对声波具有特异感受作用的器官,对其生存具有非常重要的意义。昆虫的听器主要有听觉毛、江氏器和鼓膜听器3种类型。本文主要介绍了昆虫3种听器的结构和功能特点,并从系统发生和个体发育角度介绍了鼓膜听器的演化过程。  相似文献   

8.
Songbirds are extraordinary vocalists and sensitive listeners, singing to communicate identity, engage other birds in acoustical combat, and attract mates. These processes involve auditory plasticity in that birds rapidly learn to discriminate novel from familiar songs. Songbirds also are one of the few non-human animals that use auditory feedback to learn their vocalizations, thus auditory -- vocal interactions are likely to be important to vocal learning. Recent advances strengthen the connection between song recognition and processing of birdsong in the auditory telencephalon. New insights also have emerged into the mechanisms underlying the 'gating' of auditory responses and the emergence of highly selective responses, two processes that could facilitate auditory feedback important to song learning.  相似文献   

9.
Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 972–986, 2014  相似文献   

10.
Current knowledge of sensory processing in the mammalian auditory system is mainly derived from electrophysiological studies in a variety of animal models, including monkeys, ferrets, bats, rodents, and cats. In order to draw suitable parallels between human and animal models of auditory function, it is important to establish a bridge between human functional imaging studies and animal electrophysiological studies. Functional magnetic resonance imaging (fMRI) is an established, minimally invasive method of measuring broad patterns of hemodynamic activity across different regions of the cerebral cortex. This technique is widely used to probe sensory function in the human brain, is a useful tool in linking studies of auditory processing in both humans and animals and has been successfully used to investigate auditory function in monkeys and rodents. The following protocol describes an experimental procedure for investigating auditory function in anesthetized adult cats by measuring stimulus-evoked hemodynamic changes in auditory cortex using fMRI. This method facilitates comparison of the hemodynamic responses across different models of auditory function thus leading to a better understanding of species-independent features of the mammalian auditory cortex.  相似文献   

11.
Main tendencies in studying of human and animals auditory system with psychoacoustical and electrophysiologycal methods are considered. Concerning psychoacoustical studies some basic data are presented as well as contemporary tendencies in hearing physiology in analysis of the intensity, frequency, temporal characteristics of the sound signals and data related to such phenomena as masking and adaptation. Data concerning directional hearing are presented in detail as a basis of auditory virtual reality. In electrophysiological studies of the auditory system detailed analysis of mapping in auditory centers and mechanisms concerning localization of unmoved and moving auditory stimuli was performed. Special attempt was paid to consider the reflection of different types of auditory signals in human evoked potentials.  相似文献   

12.
The neural modulation in central auditory system plays an important role in perception and processing of sound signal and auditory cognition. The inferior colliculus (IC) is both a relay station in central auditory pathway and a sub-cortical auditory center doing the sound signal processing. IC is also modulated by the descending projections from the cortex and auditory thalamus, medial geniculate body, and these neural modulations not only can affect ongoing sound signal processing but can also induce plastic changes in IC.  相似文献   

13.
In this paper, the impression of various kinds of auditory signals currently used in automobiles and a comprehensive evaluation were measured by a semantic differential method. The desirable acoustic characteristic was examined for each type of auditory signal. Sharp sounds with dominant high-frequency components were not suitable for auditory signals in automobiles. This trend is expedient for the aged whose auditory sensitivity in the high frequency region is lower. When intermittent sounds were used, a longer OFF time was suitable. Generally, "dull (not sharp)" and "calm" sounds were appropriate for auditory signals. Furthermore, the comparison between the frequency spectrum of interior noise in automobiles and that of suitable sounds for various auditory signals indicates that the suitable sounds are not easily masked. The suitable auditory signals for various purposes is a good solution from the viewpoint of universal design.  相似文献   

14.
Neurons in sensory cortices are often assumed to be feature detectors, computing simple and then successively more complex features out of the incoming sensory stream. These features are somehow integrated into percepts. Despite many years of research, a convincing candidate for such a feature in primary auditory cortex has not been found. We argue that feature detection is actually a secondary issue in understanding the role of primary auditory cortex. Instead, the major contribution of primary auditory cortex to auditory perception is in processing previously derived features on a number of different timescales. We hypothesize that, as a result, neurons in primary auditory cortex represent sounds in terms of auditory objects rather than in terms of feature maps. According to this hypothesis, primary auditory cortex has a pivotal role in the auditory system in that it generates the representation of auditory objects to which higher auditory centers assign properties such as spatial location, source identity, and meaning.Abbreviations A1 primary auditory cortex - MGB medical geniculate body - IC inferior coliculus - STRF spectrotemporal receptive field  相似文献   

15.
目的:了解链霉素对鸟听觉毒性的作用。方法:选33只健康成年虎皮鹦鹉,不同剂量的链霉素肌肉注射15日,脑干听觉诱发电位测试外周的听觉敏度和听觉通路中神经的传导和传递能力。结果:链霉素对鸟听觉有毒性作用。结论:用链霉素处理鸟可以制作聋鸟模型。  相似文献   

16.
Wang XD  Gu F  He K  Chen LH  Chen L 《PloS one》2012,7(1):e30027

Background

Extraction of linguistically relevant auditory features is critical for speech comprehension in complex auditory environments, in which the relationships between acoustic stimuli are often abstract and constant while the stimuli per se are varying. These relationships are referred to as the abstract auditory rule in speech and have been investigated for their underlying neural mechanisms at an attentive stage. However, the issue of whether or not there is a sensory intelligence that enables one to automatically encode abstract auditory rules in speech at a preattentive stage has not yet been thoroughly addressed.

Methodology/Principal Findings

We chose Chinese lexical tones for the current study because they help to define word meaning and hence facilitate the fabrication of an abstract auditory rule in a speech sound stream. We continuously presented native Chinese speakers with Chinese vowels differing in formant, intensity, and level of pitch to construct a complex and varying auditory stream. In this stream, most of the sounds shared flat lexical tones to form an embedded abstract auditory rule. Occasionally the rule was randomly violated by those with a rising or falling lexical tone. The results showed that the violation of the abstract auditory rule of lexical tones evoked a robust preattentive auditory response, as revealed by whole-head electrical recordings of the mismatch negativity (MMN), though none of the subjects acquired explicit knowledge of the rule or became aware of the violation.

Conclusions/Significance

Our results demonstrate that there is an auditory sensory intelligence in the perception of Chinese lexical tones. The existence of this intelligence suggests that the humans can automatically extract abstract auditory rules in speech at a preattentive stage to ensure speech communication in complex and noisy auditory environments without drawing on conscious resources.  相似文献   

17.
Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (~150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.  相似文献   

18.
Perceptual organization of sound begins in the auditory periphery   总被引:2,自引:1,他引:1  
Segmenting the complex acoustic mixture that makes a typical auditory scene into relevant perceptual objects is one of the main challenges of the auditory system [1], for both human and nonhuman species. Several recent studies indicate that perceptual auditory object formation, or "streaming," may be based on neural activity within the auditory cortex and beyond [2, 3]. Here, we find that scene analysis starts much earlier in the auditory pathways. Single units were recorded from a peripheral structure of the mammalian auditory brainstem, the cochlear nucleus. Peripheral responses were similar to cortical responses and displayed all of the functional properties required for streaming, including multisecond adaptation. Behavioral streaming was also measured in human listeners. Neurometric functions derived from the peripheral responses predicted accurately behavioral streaming. This reveals that subcortical structures may already contribute to the analysis of auditory scenes. This finding is consistent with the observation that species lacking a neocortex can still achieve and benefit from behavioral streaming [4]. For humans, we argue that auditory scene analysis of complex scenes is probably based on interactions between subcortical and cortical neural processes, with the relative contribution of each stage depending on the nature of the acoustic cues forming the streams.  相似文献   

19.
Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses.  相似文献   

20.
In synchronized trampolining, two gymnasts perform the same routine at the same time. While trained gymnasts are thought to coordinate their own movements with the movements of another gymnast by detecting relevant movement information, the question arises how visual and auditory information contribute to the emergence of synchronicity between both gymnasts. Therefore the aim of this study was to examine the role of visual and auditory information in the emergence of coordinated behaviour in synchronized trampolining. Twenty female gymnasts were asked to synchronize their leaps with the leaps of a model gymnast, while visual and auditory information was manipulated. The results revealed that gymnasts needed more leaps to reach synchronicity when only either auditory (12.9 leaps) or visual information (10.8 leaps) was available, as compared to when both auditory and visual information was available (8.1 leaps). It is concluded that visual and auditory information play significant roles in synchronized trampolining, whilst visual information seems to be the dominant source for emerging behavioural synchronization, and auditory information supports this emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号