首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The siphuncle of the chambered nautilus (Nautilus macromphalus) is composed of a layer of columnar epithelial cells resting on a vascularized connective tissue base. The siphuncular epithelium taken from chambers that have not yet begun to be emptied of cameral liquid has a dense apical brush border. The great number of apical cell junctions (zonula adherens) compared to the number of nuclei suggests extensive interdigitation of these cells. The perinuclear cytoplasm of these preemptying cells is rich in rough endoplasmic reticulum. The siphuncular epithelium of both emptying and “old” siphuncle (which has already completed emptying its chamber) both show little rough endoplasmic reticulum but do contain extensive systems of mitochondria-lined infoldings of the basolateral plasma membranes. Active transport of NaCl into the extracellular space of this tubular system probably entrains the water transport involved in the chamber-emptying process. Both emptying and old siphuncular epithelium also show large basal infoldings (canaliculi) continuous with the hemocoel, which appear to be filled with hemocyanin. The apical cell junctions of emptying and old siphuncular epithelium contain septate desmosomes that may help to prevent back-flow of cameral liquid into the chambers.  相似文献   

2.
Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis have been studied. Throughout the larval period to stage 60, the connective tissue consists of a few immature fibroblasts surrounded by a sparse extracellular matrix: few collagen fibrils are visible except close to the thin basal lamina. At the beginning of the transition from larval to adult epithelial form around stage 60, extensive changes are observed in connective tissue. The cells become more numerous and different types appear as the collagen fibrils increase in number and density. Through gaps in the thickened and extensively folded basal lamina, frequent contacts between epithelial and connective tissue cells are established. Thereafter, with the progression of fold formation, the connective tissue cells become oriented according to their position relative to the fold structure. The basal lamina beneath the adult epithelium becomes thin after stage 62, while that beneath the larval epithelium remains thick. Upon the completion of metamorphosis, the connective tissue consists mainly of typical fibroblasts with definite orientation and numerous collagen fibrils. These observations indicate that developmental changes in the connective tissue, especially in the region close to the epithelium, are closely related spatiotemporarily to the transition from the larval to the adult epithelial form. This suggests that tissue interactions between the connective tissue and the epithelium play important roles in controlling the epithelial degeneration, proliferation, and differentiation during metamorphic climax.  相似文献   

3.
Abstract:  Numerous plectronocerid nautiloids appear in the Upper Cambrian of China. We have restudied their siphuncular structure, first described some 20 years ago. The siphuncle is characterized by: (1) long and holochoanitic septal necks dorsally but short and recurved necks laterally and ventrally; (2) strongly expanded connecting rings laterally; (3) two calcified layers in each connecting ring, outer spherulitic-prismatic and inner compact, the latter perforated by numerous pore canals; and (4) highly oblique siphuncular segments. The strongly expanded lateral sides of the connecting rings, together with the highly oblique course of the siphuncular segments, considerably enlarged the surface area of the connecting rings in each chamber, thereby increasing the transport capacity of cameral liquid. Thus, from their first appearance, plectronocerid nautiloids had developed a siphuncle for the replacement of cameral liquid with gases, and this system had a better and a more sophisticated design than that seen in stratigraphically younger nautiloids. However, their small orthoconic or slightly cyrtoconic shells were not well adapted for jet-powered swimming.  相似文献   

4.
K Kobayashi 《Acta anatomica》1992,143(2):109-117
The three-dimensional relationship between the epithelial cell layer and the underlying connective tissue core (CTC) of the foliate papilla of the rabbit tongue was studied by scanning electron microscopy after removal of the epithelial cell layer. The foliate papillae were fixed in Karnovsky's fixative, and the epithelial cell layers were exposed to long-term hydrochloric acid treatment (3.5 N HCl for 2-3 weeks at room temperature). The foliate papillae consisted of ridges and grooves located on the posterolateral margin of the tongue. They appeared as linear projections or ridges of lingual mucosa roughly perpendicular to the longitudinal axis of the tongue. These projections or ridges were parallel to one another and separated by grooves. After removal of the epithelium, two kinds of CTC folds appeared: one was the septal fold of CTC which runs in the central portion under each linear projection or ridge, and the other consisted of two sheets of groove side folds of CTC which run along both sides of the former and face the groove side epithelium. It was revealed that there are two sheets of septal epithelial processes, and each of them fits in between each septal fold and groove side fold of CTC. Numerous taste buds were located in the groove side epithelia, and their pores faced the surface of the groove. On the hollow surfaces that appeared on the surface of the groove side fold of CTC after removal of the epithelial cells with taste buds, nerve-terminal-like structures were encountered. Some openings of the ducts of small lingual glands were arranged linearly on the underside of the basal portion of each groove side epithelium.  相似文献   

5.
We describe cameral membranes in prolecanitid and goniatitid ammonoids from the Lower Permian Arcturus Formation, Nevada, USA. The membranes are preserved as phosphatic sheets and were originally composed of organic material such as conchiolin. Because the phragmocones are filled with micritic calcite, the cameral membranes can be exposed by etching with weak acetic acid. The membranes are associated with the siphuncle and also coat the septal faces and chamber walls. The siphuncular membranes are much more extensive in the prolecanitids than in the goniatites. These membranes appear in the prolecanitids at the beginning of the third whorl, corresponding to a shell diameter of 3-4 mm, and become more complex through ontogeny. Additional membranes, called transverse membranes, appear in some of the septal saddles on the ventrolateral side. The siphuncular membranes in prolecanitids are very similar to those in the Ceratitina plus Mesozoic Ammonoidea, suggesting that such membranes are widely distributed in this group. However, the origin and function of these membranes are unclear. We argue that the siphuncular membranes were sequentially secreted by the rear mantle during forward movement of the body and were not produced by desiccation of cameral liquid after the formation of the chambers. The most compelling arguments for this interpretation are the abrupt appearance of these membranes at a shell diameter of approximately 3-4 mm in prolecanitids, ceratites, and ammonitids, coincident with the end of the neanic stage, and the uniform increase in complexity of the membranes through ontogeny. The shape of the siphuncular membranes in prolecanitids suggests the presence of an invagination on the dorsal side of the siphuncle during part of the chamber formation cycle. Cameral membranes may have served a variety of functions including stabilizing the cameral liquid to reduce rocking motion during swimming, anchoring the siphuncle to the chamber wall, and facilitating cameral liquid removal, permitting a faster rate of growth.  相似文献   

6.
The anlage of the spiral prominence can be seen on the 37th day of development as a small protrusion of the epithelium towards the lumen of the cochlear duct. During the further progress, the spiral prominence more distinctly protrudes by augmentation of the vascularized connective tissue. In the epithelial cells pinocytotic vesicles near the plasmalemma are seen earliest lateral and basal on the 37th day, apical on the 39th day. The epithelial cells send basal cytoplasmic extensions towards the connective tissue. Starting on the 44th day, small invaginations of connective tissue extend into the epithelium, remaining separated from the epithelial cells by the basal lamina. Until the 48th day, the monostratified epithelium remains columnar, thereafter it changes to cuboidal or flat. Towards the end of the development, the invaginations of the connective tissue nearly reach the surface of the epithelium, being separated from the endolymph by a small epithelial area.  相似文献   

7.
Summary Serial sections of human vaginal and keratinized oral-gingival epithelia were investigated for ciliary structures. Most melanocytes of the gingival epithelium lacked cilia, whereas almost all basal keratinocytes of the deeper portion of the epithelial ridges possessed one cilium each. In the suprabasal layers of the ridges only a few keratinocytes exhibited a single cilium. In the basal layer, at the top of the connective tissue papillae, approximately every second keratinocyte displayed a single cilium. In the suprabasal layers above the ridges no ciliated keratinocytes were observed. The basal cells of the vaginal epithelium were endowed with cilia, while cilia were absent from the suprabasal cells. In the human forearm epidermis most melanocytes and keratinocytes are supplied with a single cilium; it has been suggested that they may play a role in light reception. However, the widespread occurrence of 9 + 0 cilia in epithelial cells of internal epithelia and their coincidence with the sites of renewal of keratinocytes suggests that a relationship may exist between solitary cilia and mitotic activity.  相似文献   

8.
Summary An analysis of the ultrastructure of the tube feet of three species of sea urchins (Strongylocentrotus franciscanus, Arbacia lixula and Echinus esculentus) revealed that the smooth muscle, although known to be cholinoceptive, receives no motor innervation.The muscle fibers are attached to a double layer of circular and longitudinal connective tissue which surrounds the muscle layer and contains numerous bundles of collagen fibers. On its outside, the connective tissue cylinder is invested by a basal lamina of the outer epithelium to which numerous nerve terminals are attached. These are part of a nerve plexus which surrounds the connective tissue cylinder. The plexus itself is an extension of a longitudinal nerve that extends the whole length of the tube foot. It is composed of axons, but nerve cell bodies and synapses are conspicuously lacking, suggesting that the axons and terminals derive from cells of the radial nerve. Processes of the epithelial cells penetrate the nerve plexus and attach to the basal lamina. There is no evidence that the epithelial cells function as sensory cells.On the basis of supporting evidence it is suggested that the transmitter released by the nerve terminals diffuses to the muscle cells over a distance of several microns and in doing so affects the mechanical properties of the connective tissue.Supported by the Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft  相似文献   

9.
Summary The epithelium of normal human hard palate was subjected to stereologic analysis. Ten biopsies were selected from a total of twenty specimens collected from 9 to 16 year old females, and processed for light- and electron microscopy. At two levels of magnification, electron micrographs were sampled from three strata (basale, spinosum, granulosum) in two locations (epithelial ridges and portions over connective tissue papillae). Stereologic point counting procedures were employed to analyse a total 1560 electron micrographs. In general, the thickness of the palate epithelium was 0.12 mm (over papillae) and 0.31 mm (in ridges), the epithelium is distinctly stratified, and homogeneously ortho-keratinized. From basal to granular layers, the composition of strata revealed decreasing densities of nuclei, mitochondria, membrane-bound organelles and aggregates of free ribosomes. Keratohyalin bodies and membrane coating granules increased, and cytoplasmic filaments with a constant diameter of about 85 Å increased from 14 to 30% of cytoplasmic unit volume. The cytoplasmic ground substance occupied a stable 50% of the epithelial cytoplasm in all strata. The composition of basal layers in ridges differed from that over connective tissue papillae. The data are discussed in relation to the observations that (1) an increasing gradient of filament density is not the most characteristic feature of ortho-keratinizing oral epithelium and (2) differences in the degree of differentiation in cells of the stratum basale coincided with the comparable frequency distribution pattern of dividing cells.The authors are thankful to Miss K. Rossinsky for excellent technical assistance, to Mrs. M. Graf-de Beer for competent data computation and to Mrs. S. Münzel-Pedrazzoli for help in morphometric analysis. This study was in part supported by Grants Nos. 51 and 106 of the Hartmann Müller Foundation and by a Grant from the Foundation of Scientific Research at the University of Zürich.  相似文献   

10.
Summary The interaction between adult stratified squamous epithelium and its supporting connective tissue possibly involves both permissive and directive influences. To examine the effect of vitality and specificity of connective tissue on the maintenance of epithelial structure and histo-differentiation, specimens of skin and oral mucosa from various regions of adult mice were separated using either EDTA or trypsin. Prior to transplantation, the epithelium was recombined with either inverted homologous connective tissue or with connective tissue that had been killed either by heating or repeated freeze-thawing. Epithelial sheets were also transplanted onto the graft bed alone or in combination with striated muscle or tendon.Normal patterns of cytodifferentiation were maintained when the epithelium was recombined with inverted or frozen-thawed subepithelial connective tissue but there was a loss of spatial organization on the frozen-thawed connective tissue. In contrast, heat-killed or trypsin-treated frozen-thawed subepithelial connective tissue and non-dermal connective tissue failed to maintain a viable epithelium. These observations suggest that subepithelial connective tissues (dermis, lamina propria) but not deep connective tissues facilitate epithelial proliferation and histodifferentiation.Supported by NIH/NIDR RO1 DEO5190  相似文献   

11.
Summary The role of connective tissue in metamorphic changes of the small intestinal epithelium inXenopus laevis tadpoles was investigated by using organ culture techniques and electron microscopy. Tissue fragments isolated from various parts of the small intestine at stage 57 were cultivated. Larval cell death of the epithelium was induced by thyroid hormone in all fragments, whereas adult epithelial development was observed only in fragments isolated from the anterior intestinal region containing the typhlosole where most of the larval connective tissue was localized. The epithelium was then cultivated in recombination with homologous or heterologous non-epithelial components. The adult epithelium developed only in recombinants containing a thick connective tissue layer from the typhlosole. There was no regional difference in the developmental potency of the epithelium itself. In all explants where adult epithelium developed, the connective tissue increased in cell density just beneath the epithelium, which was rapidly proliferating and forming typical islets. At the same time, fibroblasts possessing well-developed rough endoplasmic reticulum differentiated close to epithelial cells and often made contact with them. These results indicate that the connective tissue originating from the typhlosole plays an important role in adult epithelial development of the anuran small intestine, probably via direct cell-to-cell contacts or some factor(s) synthesized by the fibroblasts.  相似文献   

12.
Morphofunctional peculiarities of tumor cells from 15 endometrial adenocarcinomas and 2 ovarian tumors have been investigated at the ultrastructural level. These cells could develop two types of colonies in soft agar: those with histotypical differentiation (numerous microvilli, well developed tight junctions, desmosomes, secretory granules), and those without it (absence of epithelial features, ability of tumor cells to produce filamentous extracellular matrix and striated collagen fibrils which are characteristic of fibroblastic cells). The addition of progesterone and tamoxifen to cell cultures resulted in rising the level of cell differentiation in the colonies. The fact that endometrial and ovarian cancer cells can express the properties specific of connective tissue cells may suggest a multipotention of the Mullerian epithelium derivatives to shed light on the histogenesis of the mixed Mullerian tumors of uterus.  相似文献   

13.
开花是植物生长发育的重要过程。CCT家族基因在植物中广泛存在, 参与植物花期的调控过程。该文从粗山羊草(Aegilops tauschii)全基因组中分离出26个CCT基因, 它们分布于7对染色体上, 按照排列顺序将其命名为AetCCT1-26。AetCCT蛋白分子量介于14.9 kDa (AetCCT3)-83.2 kDa (AetCCT12)之间, 其中有25个蛋白包含完整的CCT保守结构域。系统发育分析显示, 12对粗山羊草/乌拉尔图小麦(Triticum urartu) CCT蛋白和9对粗山羊草/水稻(Oryza sativa) CCT蛋白为直系同源蛋白。通过公共数据的数字表达分析表明, AetCCT具有组织特异性和组成型2种表达形式, 其中AetCCT3AetCCT4AetCCT7AetCCT9等9个基因在大部分组织中都有表达, 而AetCCT15AetCCT21AetCCT25等基因分别在种子、叶和根等少数组织中特异表达。AetCCT家族可以响应不同外源激素, 施用激素24小时和72小时后各成员对激素响应整体表现一致, 但不同成员对于不同激素的响应存在差异, 表明该家族成员在功能和行使方式等方面具有一定的多样性, 可能参与不同生长发育过程。光照条件影响AetCCT的表达, 说明光照和春化作用是影响与调控该家族基因表达的重要因素。研究结果有助于探索小麦(T. aestivum)进化、驯化和演变的规律, 以及认识重要农艺性状的形成与互作网络。  相似文献   

14.
Mucosa from the hard and soft palates, molar gingiva, cheek and dorsal surface of the tongue of the rat was examined in the light microscope, following Mallory's triple connective tissue stain, and in the scanning and transmission electron microscopes. The epithelium covering the hard palate, gingiva, the smooth band of mucosa at the junction of the hard and soft palates, intermediate zones of the soft palate, fungiform papilla-like structures in the central zone of the soft palate, the fungiform papillae, and the more superficial part and posterior surfaces of the filiform papillae of the tongue all exhibited complete orthokeratinization. The oral surfaces of the epithelial cells in all these areas had a honeycomb pattern of interconnecting ridges surrounding depressions. Imprints of the overlying cells that had been desquamated were apparent, and the lateral boundaries between the cells were formed by two raised ridges separated by a gap. The epithelium covering the cheek, central zone of the soft palate apart from the fungiform papilla-like structures, lateral zones of the soft palate, gingival crevice, and the mucosa between the fungiform and filiform papillae of the tongue all exhibited incomplete orthokeratinization. The oral surfaces of the epithelial cells in all these areas were relatively smooth and did not exhibit a honeycomb pattern of interconnecting ridges. Imprints of the overlying cells that had been desquamated and the lateral boundaries between the cells were only very occasionally found. In the transmission electron microscope the outlines of the cells were compatible with the surface patterns seen in the scanning electron microscope. The possible relationships between the degree of orthokeratinization and ultrastructure of the various epithelia are discussed.  相似文献   

15.
Summary The epithelium of normal human buccal mucosa was subjected to stereologic analysis. Ten biopsies were selected from a total of 20 specimens collected from 10 to 15 year old females, and processed for lightand electron microscopy. At two levels of magnification, electron micrographs were sampled from four strata in epithelial ridges and from three strata in regions over connective tissue papillae. Stereologic point counting based on a recently improved system for analyzing stratified epithelia was employed to analyze a total of 1820 electron micrographs. Buccal epithelium was found to be 0.48 mm thick, interdigitated by long, slender connective tissue papillae, and comprised of a narrow basal and suprabasal, and a broad, homogeneously structured spinous and surface compartment. From basal to surface layers, the epithelium displayed a differentiation pattern different from that of keratinizing epithelia. This pattern was a function mainly of a drastic density increase of cytoplasmic filaments of a constant 80 Å diameter, a corresponding decrease of the cytoplasmic ground substance, the appearance of dark-cored membrane coating granules and individually varying amounts of glycogen deposition. It is suggested that the dense meshwork of filaments which fill 70% of the epithelial cytoplasm in a broad subsurface and surface layer, serves as the functional matrix for epithelial distensibility.This investigation was performed while Dr. Landay was on leave from the Department of Periodontology, Temple University, School of Dentistry.  相似文献   

16.
This study reports the ultrastructure of subpopulations of epithelial cells of the thymic parenchyma during the post-hatching development of the rainbow trout, Salmo gairdner, kept at 14 degrees C. At hatching, the thymus contained a small number of medium and large thymocytes interspersed among three different types of epithelial cells: (1) epithelial cells adjacent to the connective tissue capsule; (2) ramified dark epithelial cells with electron-dense cytoplasm; and (3) pale electron-lucent epithelial cells displaying secretory-like features. All these cells types were anchored to one another by desmosomes and had apparently differentiated from the pharyngeal epithelium. At 4 days after hatching, the thymus enlarged, and numerous gaps occurred between the cell processes of contiguous epithelial cells adjacent to the capsular connective tissue. In 21-day-old trout, thymic trabeculae developed carrying blood vessels, and a subcapsular zone became evident containing lymphoblasts and large subcapsular epithelial cells. In 30-day-old trout, an outer thymic zone developed consisting of spindle-shaped epithelial cells which formed a dense network. At this stage, scattered cystic cells, which apparently differentiated from the pale epithelial cells, were present.  相似文献   

17.
The degenerative processes in the larval small intestine of Xenopus laevis tadpoles during spontaneous metamorphosis and during thyroid hormone-induced metamorphosis in vitro were examined by electron microscopy. Around the beginning of spontaneous metamorphic climax (stages 59-61), both apoptotic bodies derived from larval epithelial cells and intraepithelial macrophage-like cells suddenly increase in number. The macrophage-like cells become rounded and enlarged because of numerous vacuoles containing the apoptotic bodies. Mitotic profiles of the macrophage-like cells, however, are localized in the connective tissue where different developmental stages of macrophage-like cells are present. After stage 62, the intraepithelial macrophage-like cells decrease in number, while large macrophage-like cells which include the apoptotic bodies and retain intact cell membranes and nuclei appear in the lumen. Degenerative changes similar to those during spontaneous metamorphosis described above could be reproduced in vitro. In tissue fragments isolated from the small intestine of stage 57 tadpoles and cultured in the presence of thyroid hormone, the number of intraepithelial macrophage-like cells reaches its maximum around the 3rd day of cultivation when the larval epithelial cells most rapidly decrease in number. These results suggest that the rapid degeneration of larval epithelial cells occurs not only because of apoptosis of the epithelial cells themselves but also from heterolysis by macrophages. The macrophages probably originate in the connective tissue, actively proliferate, migrate into the larval epithelium around the beginning of metamorphic climax, and are finally extruded into the lumen.  相似文献   

18.
Summary The epithelial lining of the mucosa of the edentulous, maxillary alveolar ridge was subjected to an ultrastructural and stereological analysis. Four biopsies collected from the non-inflamed crest, i.e., the center over former tooth sockets, in non-denture-wearing female patients 30 to 55 years of age were processed for light and electron microscopy. At the light-microscopic level, epithelial thickness was determined histometrically. Electron micrographs were sampled at two levels of magnification, from five strata in regions of epithelial ridges and from three strata over connective tissue papillae. Standardized stereological pointcounting techniques were employed to analyze a total of 990 electron micrographs. Observations and data revealed that at the alveolar ridge the oral epithelium is truly keratinizing and comprises four strata including a 40±5 m-thick stratum corneum, which displays the oral keratin pattern. The histoand cytodifferentiation were peculiar: (1) Compared to the neighbouring gingival and hard palate epithelium, that of the alveolar crest was markedly thicker, with elongated rete ridges indicating acanthosis. (2) The cytoarchitecture was identical neither to the gingival nor to the hard palate epithelium but revealed a mixture of features typical for either of these two epithelia. Reasons for this are explained on the basis of factors, possible genetic, inherent in epithelial cells that are possibly derived from both the gingival and the palatal environment.  相似文献   

19.
The action of the epithelium on differentiation of connective tissue cells of Xenopus small intestine during metamorphosis was investigated by using culture and morphological techniques. Connective tissue fragments isolated from the small intestine at stage 57 were cultivated in the presence or absence of homologous epithelium. In the presence of the epithelium, metamorphic changes in the connective tissue were fully induced by hormones including thyroid hormone (T3), as during spontaneous metamorphosis, whereas they were partially induced in the absence of the epithelium. Macrophage-like cells showing non-specific esterase activity in the connective tissue were much fewer in the absence of the epithelium than in the presence of it, and aggregates of fibroblasts possessing well-developed rough endoplasmic reticulum developed only in the presence of the epithelium. Just before the aggregation of the fibroblasts, the connective tissue close to the epithelium became intensely stained with concanavalin A (ConA) and wheat germ agglutinin (WGA). The present results indicate that the epithelium plays important roles in the differentiation of intestinal connective tissue cells, which in turn affect the epithelial transformation from larval to adult form during anuran metamorphosis. Thus, the tissue interaction between the epithelium and the connective tissue in the anuran small intestine is truly bidirectional.  相似文献   

20.
Development of the gastric connective tissue of Xenopus laevis during metamorphosis was investigated by electron microscopy. Throughout the larval period to stage 60, the layer of connective tissue underlying the gastric epithelium consists of immature fibroblasts surrounded by a sparse extracellular matrix. At the beginning of the transition from the larval to the adult epithelial form, at about stage 60, extensive changes occur in the connective tissue. The number of cells suddenly increses and different cell types appear. Numerous contacts between epithelial and connective tissue cells are established through random gaps in the thickened basal lamina. During stages 62–63, just after the beginning of the morphogenesis of adult-type glands, the basal lamina lining the glandular epithelium becomes thinner, and the number of contacts decreases rapidly except near the tips of the glands. After the glandular cells begin to produce zymogen granules at stage 64, contacts become rare. From stage 63, when the muscularis mucosae develops, until the completion of metamorphosis, the connective tissue consists mainly of typical fibroblasts. Outside the muscularis mucosae, the fibroblasts of the lamina propria are aligned in parallel with the curvature of the glands. These observations indicate that developmental changes in the connective tissue are closely related spatiotemporally to those of the epithelial transition from larval to adult form during metamorphic climax. Although some changes are similar to those in the intestine (Ishizuya-Oka and Shimozawa, '87b), others are specific to the gastric region, which suggests that connective tissue may have a role in organ-specific differentiation of the gastric epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号