首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sensory systems, including the olfactory system, are able to adapt to changing environmental conditions. In nature, changes in temperature modify the volatility and concentration of odorants in the air. If the olfactory system does not adapt to these changes, it could relay wrong information about the distance to or direction of odor sources. Recent behavioral studies in Drosophila melanogaster showed olfactory acclimation to temperature. In this report, we investigated if temperature affects olfaction at the level of the receptors themselves. With this aim, we performed electroantennograms (EAGs) and single sensillum recordings (SSRs) to measure the response to several odorants in flies that had been submitted to temperature treatments. In response to all tested odorants, the amplitude of the EAGs increased in flies that had been exposed to a higher temperature and decreased after cold treatment, revealing that at least part of the reported change in olfactory perception happens at reception level. SSRs of odorant stimulated basiconic sensilla ab2 and ab3 showed some changes in the number of spikes after heat or cold treatment. However, the number and shape of spontaneous action potentials were unaffected, suggesting that the observed changes related specifically to the olfactory function of the neurons.  相似文献   

2.
3.
Chemoreception is a principle modality by which organisms gain information from their environment, and extensive variation in odor-mediated behavior has been documented within and among species. To examine the mechanisms by which sensory systems mediate these responses, we ask to what extent variation in Drosophila melanogaster odorant receptor genes contributes to variation in odor-mediated behavior. Significant differences in behavioral responses to structurally similar odorants, methyl hexanoate and ethyl hexanoate, were found in a natural population. Polymorphisms in 3 genomic regions (Or22a/Or22b, Or35a, and Or47a) were identified and associated with variation in behavior to these esters. Overall similarity in association profiles for both odorants was observed, except for Or47a in which polymorphisms were associated solely with variation in responses to ethyl hexanoate. Our analyses were then extended to examine polymorphisms in 3 odorant receptors previously reported to contribute to variation in olfactory behavior for the chemically distinct odorants benzaldehyde and acetophenone. Two Or10a polymorphisms were associated with variation in response to ethyl hexanoate. Finally, differences in Or35a and Or47a expression were associated with variation in responses to ethyl hexanoate. These results demonstrate that the genetic variation at the peripheral sensory stage plays a role in mediating differences in odor-mediated behavior.  相似文献   

4.
In order to address the nature of genetic variation in learning performance, we investigated the response to classical olfactory conditioning in "high-learning" Drosophila melanogaster lines previously subject to selection for the ability to learn an association between the flavor of an oviposition medium and bitter taste. In a T-maze choice test, the seven high-learning lines were better at avoiding an odor previously associated with aversive mechanical shock than were five unselected "low-learning" lines originating from the same natural population. Thus, the evolved improvement in learning ability of high-learning lines generalized to another aversion learning task involving a different aversive stimulus (shock instead of bitter taste) and a different behavioral context than that used to impose selection. In this olfactory shock task, the high-learning lines showed improvements in the learning rate as well as in two forms of consolidated memory: anesthesia-resistant memory and long-term memory. Thus, genetic variation underlying the experimental evolution of learning performance in the high-learning lines affected several phases of memory formation in the course of olfactory aversive learning. However, the two forms of consolidated memory were negatively correlated among replicate high-learning lines, which is consistent with a recent hypothesis that these two forms of consolidated memory are antagonistic.  相似文献   

5.
A modification of the trap assay (Woodard et al., 1989) was used to evaluate the response of Drosophila melanogaster (Meigen) to food media containing menthol. Dose-response curves for flies to mentholic foods were produced for flies that had been pre-exposed to menthol, during development and adult life, and flies that had not been exposed to menthol before the assay. Mentholic food media were less attractive to Drosophila than plain food medium. Rearing flies on a medium containing menthol reduced their aversion to some concentrations of menthol. The rearing effect was not simply due to lowered general activity levels resulting from developing in a medium containing menthol. There was a threshold concentration of menthol in the rearing medium below which we found no induced behavioural change.  相似文献   

6.
7.
8.
Voltage-activated currents and odor-modulated conductances were studied in cells in semi-intact Drosophila third antennal segments (the main olfactory organ) using patch-clamp techniques. All neurons expressed outward currents, and most expressed labile fast transient inward currents with kinetics similar to Na+ currents in other systems. Action potentials were detected as bipolar capacitative current transients in cell-attached or loose patches from the soma of both odor-sensitive (97%) and insensitive neurons. A mixture of odorants from five chemical classes caused an increase (∼70%), decrease (∼10%), or no effect on firing frequency in pharate adult neurons. The development of chemosensitivity was examined and odor-induced changes in action potential firing frequency were recorded in pupal antennal neurons as early as P8, a stage after completion of sensillar development. The character of odor-induced responses was more profound and complex later in development; small, tonic increases in firing frequency were observed at pupal stages P8 through P11(ii), while in older pupae and young adults ∼25% of the increased responses were phasic-tonic. The apical dendrite was the site of odor modulation in ∼90% and 100% of responsive adult and early pupal neurons, respectively. Whole-cell recordings revealed that apparent nonselective cation and chloride conductances were modulated by a mixture of odorants in separate antennal neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 123–137, 1997.  相似文献   

9.
The Drosophila melanogaster subgroup has been the focus of numerous studies about evolution. We address the question of how the olfactory code has evolved among the nine sister species. By using in vivo electrophysiological measurements, so called single-cell recordings, we have established the ligand affinity of a defined subset of olfactory receptor neurons (ORNs) across all nine species. We show that the olfactory code as relayed by the investigated subset of ORNs is conserved to a striking degree. Distinct shifts in the code have occurred only within the simulans clade. However, these shifts are restricted to an altered tuning profile of the same single ORN type in all three of the simulans siblings and a more drastic change unique to D. sechellia, involving a complete loss of one sensillum type in favour of another. The alterations observed in D. sechellia may represent a novel host-specific adaptation to its sole host, morinda fruit (Morinda citrifolia). The overall high degree of similarity of the code within the subgroup is intriguing when considering the great variety in distributions as well as in habitat and host choice of the siblings, factors that could greatly affect the olfactory system.  相似文献   

10.
The olfactory circuit of the fruit fly Drosophila melanogaster has emerged in recent years as an excellent paradigm for studying the principles and mechanisms of information processing in neuronal circuits. We discuss here the organizational principles of the olfactory circuit that make it an attractive model for experimental manipulations, the lessons that have been learned, and future challenges.  相似文献   

11.
12.
13.
G proteins are heterotrimeric proteins that play a key role in signalling transduction conveying signals from cell surface receptors to intracellular effector proteins. In particulate preparations from Drosophila melanogaster embryos, only one substrate of 39,000-40,000 molecular weight could be ADP-ribosylated with pertussis toxin. This substrate reacted in immunoblotting and immunoprecipitation experiments with a polyclonal antibody directed against the carboxy-terminal sequence of the alpha subunit of the mammalian Go protein. The Drosophila Go alpha protein was present at all stages of embryonic development; however, its expression markedly increased after 10 h embryogenesis, a period of time during which there is an active development of axonal tracts. Immunolocalization on whole mount embryos has indicated that this protein is principally localized in the CNS and is mainly restricted to the neuropil without any labelling of the cell bodies. In contrast, all the axon tracts of the CNS appeared to be highly labelled. The distribution of the Go alpha protein was also examined in several neurogenic mutants. The Go alpha protein expression was not altered in any of them but the pattern of labelling was disorganized as was the neuronal network. These results suggest a possible role for the Go protein during axonogenesis.  相似文献   

14.
Complex external stimuli such as odorants are believed to be internally represented in the brain by spatiotemporal activity patterns of extensive neuronal ensembles. These activity patterns can be recorded by optical imaging techniques. However, optical imaging with conventional fluorescence dyes usually does not allow for resolving the activity of biologically defined groups of neurons. Therefore, specifically targeting reporter molecules to neuron populations of common genetic identity is an important goal. We report the use of the genetically encoded calcium-sensitive fluorescence protein cameleon 2.1 in the Drosophila brain. We visualized odorant-evoked intracellular calcium concentration changes in selectively labeled olfactory projection neurons both postsynaptically in the antennal lobe, the primary olfactory neuropil, and presynaptically in the mushroom body calyx, a structure involved in olfactory learning and memory. As a technical achievement, we show that calcium imaging with a genetically encoded fluorescence probe is feasible in a brain in vivo. This will allow one to combine Drosophila's advanced genetic tools with the physiological analysis of brain function. Moreover, we report for the first time optical imaging recordings in synaptic regions of the Drosophila mushroom body calyx and antennal lobe. This provides an important step for the use of Drosophila as a model system in olfaction.  相似文献   

15.
Olfactory responses of Drosophila melanogaster larvae to a homologous series of primary alcohols (methanol ... decanol) were tested. Alcohols at either extreme of the chain lengths studied (methanol, ethanol and decanol) evoked no significant responses. Heptanol and nonanol both produced dose-independent responses, larvae being attracted to heptanol and repulsed by nonanol. The remaining alcohols elicited dose-related attractive responses. Responses to hexanol and nonanol decline with increasing larval age. Genetic differences were found for the response to heptanol, with larvae from a Japanese strain, Katsunuma, being indifferent to this substance. Chromosome exchange revealed that a major factor involved in the response to heptanol is located on chromosome II; factors on chromosome III quantitatively modulate this response. Three mutant strains were isolated following EMS mutagenesis of chromosome III. These three strains, IndifferentA, IndifferentB and IndifferentC, show incomplete or total anosmia when stimulated with nonanol. Adult flies from these strains show similar effects. IndifferenB and C strains are dominant over the Canton-S control strain; the IndifferentA strain shows semi-dominance. Results are discussed in the light of the ecology of Drosophila larvae and the relation between olfactory stimulus and receptor conformation and number.  相似文献   

16.
17.

Background

For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system.

Methodology/Principal Findings

We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions.

Conclusions/Significance

We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms.  相似文献   

18.
Female Drosophila melanogaster frequently mate with multiple males, and the success of a given male depends not only on his genotype but also on the genotype of his competitor. Here, we assess how natural genetic variation affects male–male interactions for traits influencing pre‐ and postcopulatory sexual selection. Males from a set of 66 chromosome substitution lines were competed against each other in a ‘round‐robin’ design, and paternity was scored using bulk genotyping. We observed significant effects of the genotype of the first male to mate, the second male to mate and an interaction between the males for measures of male mating rate and sperm utilization. We also identified specific combinations of males who show nontransitive patterns of reproductive success and engage in ‘rock‐paper‐scissors’ games. We then tested for associations between 245 polymorphisms in 32 candidate male reproductive genes and male reproductive success. We identified eight polymorphisms in six reproductive genes that associate with male reproductive success independent of the competitor (experimentwise < 0.05). We also identified four SNPs in four different genes where the relative reproductive success of the alternative alleles changes depending on the competing males' genetic background (experimentwise < 0.05); two of these associations include premature stop codons. This may be the first study that identifies the genes contributing to nontransitivity among males and further highlights that ‘rock‐paper‐scissors’ games could be an important evolutionary force maintaining genetic variation in natural populations.  相似文献   

19.
20.
Odour-guided behaviour is a quantitative trait determined by many genes that are sensitive to gene-environment interactions. Different natural populations are likely to experience different selection pressures on the genetic underpinnings of chemosensory behaviour. However, few studies have reported comparisons of the quantitative genetic basis of olfactory behaviour in geographically distinct populations. We generated isofemale lines of Drosophila melanogaster from six populations in Argentina and measured larval and adult responses to benzaldehyde. There was significant variation within populations for both larval and adult olfactory behaviour and a significant genotype x sex interaction (GSI) for adult olfactory behaviour. However, there is substantial variation in the contribution of GSI to the total phenotypic variance among populations. Estimates of evolvability are orders of magnitude higher for larvae than for adults. Our results suggest that the potential for evolutionary adaptation to the chemosensory environment is greater at the larval feeding stage than at the adult reproductive stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号