首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Bumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees.

Methodology/Principal Findings

We studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban) areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface) from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals) decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species.

Conclusions/Significance

Our results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem service pollination in areas strongly influenced by human activity.  相似文献   

2.
传粉蜂为作物生产和粮食安全提供重要的生态系统服务。随着农业经济的不断发展,土地利用强度加剧,大量自然或半自然生境已经转变为农业用地。景观均质化和集约化管理导致野生蜂多样性下降,从而威胁到农业可持续生产。本研究以北京市昌平区苹果园为对象,探究景观复杂度(半自然生境比例)、局地管理强度(地表开花植物多样性和土壤全氮)及其交互作用对传粉蜂多样性的影响。结果表明: 共捕获传粉蜂8642头,其中人工蜂5125头,野生蜂分属5科14属49种3517头。传粉蜂多样性对景观复杂度和局地管理强度响应的最优尺度在500 m。样点半径500 m范围内,总传粉蜂和野生蜂多度随周围半自然生境增加均呈显著上升趋势。景观复杂度与开花植物多样性的交互作用对总传粉蜂和野生蜂物种丰富度有显著影响。当景观复杂度较低时(≤29.9%),总传粉蜂和野生蜂物种丰富度与开花植物多样性呈显著正相关;而当景观复杂度较高时(>29.9%),总传粉蜂和野生蜂物种丰富度与开花植物多样性呈显著负相关。此外,人工蜂多度随果园内局地开花植物多样性和土壤全氮增加呈显著升高趋势。土壤全氮与开花植物多样性的交互作用对人工蜂多度有显著影响。当土壤全氮含量较低时(≤1.9 g·kg-1),人工蜂多度与开花植物多样性呈显著正相关;而当土壤全氮含量较高时(>1.9 g·kg-1),人工蜂多度与开花植物多样性呈显著负相关。农业景观中半自然生境比例的增加有利于提高野生蜂多度,而地表开花植物多样性可以促进传粉蜂多样性,但是受到景观尺度(半自然生境比例)和局地尺度(氮肥施用)的影响。因此,农业景观中野生蜂多样性的维持需要综合考虑多尺度因素来制定保护策略。尽可能保留更高比例的耕地仍然是生产的长期需求,而保持中等景观复杂度,增加地表开花植物多样性,减少氮肥施用量将是促进苹果园传粉蜂多样性的有效方式。  相似文献   

3.
Plant diversity changes can impact the abundance, diversity, and functioning of species at higher trophic levels. We used an experimental gradient in grassland plant diversity ranging from 1 to 16 plant species to study multitrophic interactions among plants, cavity-nesting bees and wasps, and their natural enemies, and analysed brood cell density, insect diversity (species richness), and bee and wasp community similarity over two consecutive years. The bee and wasp communities were more similar among the high (16 species) diversity plots than among plots of the lower diversity levels (up to 8 species), and a more similar community of bees and wasps resulted in a more similar community of their parasitoids. Plant diversity, which was closely related to flower diversity, positively and indirectly affected bee diversity and the diversity of their parasitoids via increasing brood cell density of bees. Increasing plant diversity directly led to higher wasp diversity. Parasitism rates of bees and wasps (hosts) were not affected by plant diversity, but increased with the diversity of their respective parasitoids. Decreases in parasitism rates of bees arose from increasing brood cell density of bees (hosts), whereas decreasing parasitism rates of wasps arose from increasing wasp diversity (hosts). In conclusion, decreases in plant diversity propagated through different trophic levels: from plants to insect hosts to their parasitoids, decreasing density and diversity. The positive relationship between plant diversity and the community similarity of higher trophic levels indicates a community-stabilising effect of high plant diversity.  相似文献   

4.
Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services.  相似文献   

5.

Background

Wild bees are important pollinators that have declined in diversity and abundance during the last decades. Habitat destruction and fragmentation associated with urbanization are reported as part of the main causes of this decline. Urbanization involves dramatic changes of the landscape, increasing the proportion of impervious surface while decreasing that of green areas. Few studies have investigated the effects of urbanization on bee communities. We assessed changes in the abundance, species richness, and composition of wild bee community along an urbanization gradient.

Methodology/Principal Findings

Over two years and on a monthly basis, bees were sampled with colored pan traps and insect nets at 24 sites located along an urbanization gradient. Landscape structure within three different radii was measured at each study site. We captured 291 wild bee species. The abundance of wild bees was negatively correlated with the proportion of impervious surface, while species richness reached a maximum at an intermediate (50%) proportion of impervious surface. The structure of the community changed along the urbanization gradient with more parasitic species in sites with an intermediate proportion of impervious surface. There were also greater numbers of cavity-nesting species and long-tongued species in sites with intermediate or higher proportion of impervious surface. However, urbanization had no effect on the occurrence of species depending on their social behavior or body size.

Conclusions/Significance

We found nearly a third of the wild bee fauna known from France in our study sites. Indeed, urban areas supported a diverse bee community, but sites with an intermediate level of urbanization were the most speciose ones, including greater proportion of parasitic species. The presence of a diverse array of bee species even in the most urbanized area makes these pollinators worthy of being a flagship group to raise the awareness of urban citizens about biodiversity.  相似文献   

6.
Despite the global trend in urbanization, little is known about patterns of biodiversity or provisioning of ecosystem services in urban areas. Bee communities and the pollination services they provide are important in cities, both for small-scale urban agriculture and native gardens. To better understand this important ecological issue, we examined bee communities, their response to novel floral resources, and their potential to provide pollination services in 25 neighborhoods across Chicago, IL (USA). In these neighborhoods, we evaluated how local floral resources, socioeconomic factors, and surrounding land cover affected abundance, richness, and community composition of bees active in summer. We also quantified species-specific body pollen loads and visitation frequencies to potted flowering purple coneflower plants (Echinacea purpurea) to estimate potential pollination services in each neighborhood. We documented 37 bee species and 79 flowering plant genera across all neighborhoods, with 8 bee species and 14 flowering plant genera observed on average along each neighborhood block. We found that both bee abundance and richness increased in neighborhoods with higher human population density, as did visitation to purple coneflower flower heads. In more densely populated neighborhoods, bee communities shifted to a suite of species that carry more pollen and are more active pollinators in this system, including the European honey bee (Apis mellifera) and native species such as Agapostemon virescens. More densely populated neighborhoods also had a greater diversity of flowering plants, suggesting that the positive relationship between people and bees was mediated by the effect of people on floral resources. Other environmental variables that were important for bee communities included the amount of grass/herbaceous cover and solar radiation in the surrounding area. Our results indicate that bee communities and pollination services can be maintained in dense urban neighborhoods with single-family and multi-family homes, as long as those neighborhoods contain diverse and abundant floral resources.  相似文献   

7.
Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.  相似文献   

8.
1. Pollinating insects provide important ecosystem services and are influenced by the intensity of grazing. Based on the Intermediate Disturbance Hypothesis (IDH), pollinator diversity is expected to peak at intermediate grazing intensities. However, this hump‐shaped relationship is rarely found. 2. The effect of grazing intensity was tested on flower cover, on the abundance and richness of bees, hoverflies and bee flies, and on pollination services to early‐flowering bee‐pollinated Asphodelus ramosus L. For that, we used data on 11 plant–pollinator phryganic communities from Lesvos Island (Greece) widely differing in grazing intensities. 3. Flower abundance and richness showed hump‐shaped relationships with grazing intensity. Grazing affected the abundance and richness of bees and hoverflies directly and also indirectly, through changes in the flower community. Grazing influenced directly the richness but not the abundance of bee flies. Overall, pollinator abundance and richness showed hump‐shaped relationships with grazing intensity, but variations in strength (hoverfly abundance) and direction (bee community) of the effect appeared along the season. Early in the season, grazing increased bee abundance but decreased richness, resulting in increased pollen limitation in A. ramosus. 4. The effects of grazing on pollinators vary with the intensity of the disturbance, generally supporting the IDH, and the timing of land‐use activities may influence pollination services. Management strategies should include moderate grazing levels to preserve overall diversity in this area, however, the conservation of particular early bee or bee‐pollinated species may benefit from reduced grazing in early spring.  相似文献   

9.
Floral resources on crop field margins are a well-accepted measure to increase bee abundance in agricultural landscapes. However, studies have mainly focused on managed margins, while studies on the effect of unmanaged floral margins for the conservation of bees are still scarce. This work aims to test and compare the effects of three types of floral margins (managed herbaceous, managed shrubby, and unmanaged herbaceous) on the abundance and diversity of bees in order to propose a management strategy for the conservation of pollinating insects. Bee abundance was recorded by visual samplings in plots of 2 × 2 square meters over two years in the three margin types in four localities in southern Spain. The diversity of plant species and the flowers they supported were measured to explain the associated bee communities. Differences in the relative abundances of bee families and the number and abundance of bee genera were observed between margin types. Andrenidae was generally more abundant in the herbaceous margins regardless of whether these were managed or not. With the exception of the Halictidae, the majority of bees families (wild Apidae, Apis mellifera, Colletidae and Megachilidae) were more abundant in the managed than unmanaged margins. Moreover, the number of bee genera was higher in managed than in unmanaged margins. In addition, here we show that managed margins supported at least 30% more rare bee genera than unmanaged margins, highlighting the importance of floral margins management for the enhancement and conservation of bee communities, restoring habitat and food resources for pollinators across the Mediterranean agricultural landscape.  相似文献   

10.
Cucumber (Cucumis sativus L.) is among the plants highly dependent on insect-mediated pollination, but little is known about its unmanaged pollinators. Both domestic and wild bee populations in central Wisconsin pickling cucumber fields were assessed using a combination of pan trapping and floral observations before and during bloom. Together with land cover analyses extending 2,000 m from field centers, the relationship of land cover components and bee abundance and diversity were examined. Over a 2-yr sample interval distributed among 18 experimental sites, 3,185 wild bees were collected representing >60 species. A positive association was found between both noncrop and herbaceous areas with bee abundance and diversity only during bloom. Response of bee abundance and diversity to land cover was strongest at larger buffers presumably because of the heterogeneous nature of the landscape and connectivity between crop and noncrop areas. These results are consistent with previous research that has found a weak response of wild bees to surrounding vegetation in moderately fragmented areas. A diverse community of wild bees is present within the fields of a commercial cucumber system, and there is evidence of floral visitation by unmanaged bees. This evidence emphasizes the importance of wild pollinators in fragmented landscapes and the need for additional research to investigate the effectiveness of individual species in pollen deposition.  相似文献   

11.
Summary Annual flower production ranged over four orders of magnitude among individuals of the tropical tree Prockia crucis (Flacourtiaceae), but the number of visits per flower by bees did not increase with flower number. In a population in Jalisco, México, the trees flower for about one week each year, offering only pollen to the bees (mostly solitary species). In a small group of trees, the number of visits per flower was less on trees with greater flower production but in a large group visitation did not vary between trees. Pollen flow probably was not directed from large to small trees or vice versa, because the number of flowers per tree did not determine the schedule of visits. The ratio of pollinators to pollen thieves decreased rapidly through the day, while individuals of both groups foraged more rapidly. Most bee species were rare, and only a small subset of medium-sized to large bees were effective pollinators. Large and small groups of trees differed in the relationship between individual flower crop and abundance and diversity of both pollinators and thieves.  相似文献   

12.
Bumble bees (genus Bombus) are important pollinators with more than 260 species found worldwide, many of which are in decline. Twenty‐five species occur in California with the highest species abundance and diversity found in coastal, northern, and montane regions. No recent studies have examined California bumble bee diversity across large spatial scales nor explored contemporary community composition patterns across the state. To fill these gaps, we collected 1740 bumble bee individuals, representing 17 species from 17 sites (~100 bees per site) in California, using an assemblage monitoring framework. This framework is intended to provide an accurate estimate of relative abundance of more common species without negatively impacting populations through overcollection. Our sites were distributed across six ecoregions, with an emphasis on those that historically hosted high bumble bee diversity. We compared bumble bee composition among these sites to provide a snapshot of California bumble bee biodiversity in a single year. Overall, the assemblage monitoring framework that we employed successfully captured estimated relative abundance of species for most sites, but not all. This shortcoming suggests that bumble bee biodiversity monitoring in California might require multiple monitoring approaches, including greater depth of sampling in some regions, given the variable patterns in bumble bee abundance and richness throughout the state. Our study sheds light on the current status of bumble bee diversity in California, identifies some areas where greater sampling effort and conservation action should be focused in the future, and performs the first assessment of an assembly monitoring framework for bumble bee communities in the state.  相似文献   

13.
Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega‐diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness.  相似文献   

14.
Pollination service in agricultural crops increases significantly with pollinator diversity and wild pollinator abundance. Differences in the foraging behaviour of pollinating insects are one of the reasons why pollinator diversity and abundance enhances crop pollination. Here, we focused on the foraging behaviour of honey bees and bumble bees in sweet cherry orchards. In addition, we studied the influence of bee diversity and abundance on the foraging behaviour of honey bees and bumble bees. Honey bees were found to visit fewer flowers than bumble bees. Bumble bees also showed a higher probability of changing trees between rows than honey bees. Both visitation rate and probability of row changes of honey bees increased with bumble bee diversity and with bumble bee abundance. We also found that the probability of row changes of honey bees increased with increasing bumble bee abundance. These effects of bumble bee richness and abundance on the pollination behaviour of honey bees can improve the pollination performance of honey bees in crops that depend on cross pollination. Our results highlight the higher pollination performance of bumble bees and the facilitative effect of wild pollinators to crop pollination.  相似文献   

15.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

16.
Orchid bees are important pollinators in tropical forests. Although studies have already detected effects of habitat loss and forest fragmentation on bee assemblages, little is known about orchid bees in urban forest fragments. The aim of this study was to analyse the influence of forest fragments (size and edge index) and landscape features (forest cover area and built-up area around the forest fragments, connectivity and spatial distance from the urban center) on the abundance, richness and composition of orchid bees. Male bees were attracted by odoriferous baits and collected in ten forest fragments of different sizes. In total, we collected 3166 male bees belonging to 4 genera and 38 species. The increase of the built-up area and the reduction of the forest cover area around the forest fragments decreased the abundance and richness of bees. We recorded a smaller number of bees in areas closer to the urban center. We failed to find a significant relationship between abundance/richness of bees and forest fragment area, edge index, and connectivity. We observed that the faunistic dissimilarity was positively correlated with the geographic distance between forest fragments. The forest fragments that presented greater landscape dissimilarity also presented greater faunistic dissimilarity. Our results suggest that the matrix structure around the forest fragments is an important factor that influences the Euglossini bee assemblages inside these forest fragments. Based on our results, we believed that the conservation of fragments with a larger forest cover area and smaller built-up areas around them contribute to the maintenance of the diversity of orchid bees and their pollination services.  相似文献   

17.
18.
The diversity and abundance of wild bees ensures the delivery of pollination services and the maintenance of ecosystem diversity. As previous studies carried out in Central Europe and the US have shown, bee diversity and abundance is influenced by the structure and the composition of the surrounding landscape. Comparable studies have so far not been carried out in the Mediterranean region. The present study examines the influence of Mediterranean landscape context on the diversity and abundance of wild bees. To do this, we sampled bees in 13 sites in olive groves on Lesvos Island, Greece. Bees were assigned to five categories consisting of three body size groups (small, medium and large bees), the single most abundant bee species (Lasioglossum marginatum) and all species combined. The influence of the landscape context on bee abundance and species richness was assessed at five radii (250, 500, 750, 1000 and 1250 m) from the centre of each site. We found that the abundance within bee groups was influenced differently by different landscape parameters and land covers, whereas species richness was unaffected. Generally, smaller bees' abundance was impacted by landscape parameters at smaller scales and larger bees at larger scales. The land cover that influenced bee abundance positively was olive grove, while phrygana, conifer forest, broad-leaved forest, cultivated land, rock, urban areas and sea had mostly negative or no impact. We stress the need for a holistic approach, including all land covers, when assessing the effects of landscape context on bee diversity and abundance in the Mediterranean.  相似文献   

19.
1.  The evaluation of restoration measures is an important task of conservation biology. Inland sand dunes and dry, oligotrophic grasslands have become rare habitat types in large parts of Central Europe and their restoration and management is of major importance for the preservation of many endangered plant and insect species. Within such habitats, it is important to restore key ecosystem services, such as pollination networks. As wild bees are the most important pollinators in many ecosystems, they represent a suitable key group to evaluate restoration measures. Furthermore, the recent decline of many bee species and the potential ecological and economic consequences are currently topics of strong scientific interest.
2.  We studied the succession of bee communities in response to restoration measures of sand dunes and sand grasslands and compared these communities with those of old sand dune complexes.
3.  Our results show that wild bees respond rapidly to restoration measures indicated by a high species richness and abundance. The community structure of bees at restoration sites converged only slightly to those of the target sites. A higher similarity was found between bee communities at the restoration sites (sand dunes and grasslands), indicating that their close proximity was an important determinant of species overlap. Environmental factors such as the number of entomophilous plant species and moisture had a strong influence on wild bee species composition.
4.   Synthesis and applications . The restoration of inland sand dune complexes provides opportunities for colonization by a diverse wild bee community. Although it is difficult to establish a given target community, restoration measures gave rise to a high pollinator diversity and abundance, suggesting that community function can be re-established.  相似文献   

20.
Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号