首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protein kinase was extensively purified to near-homogeneity from wheat germ by a procedure involving affinity chromatography on casein-Sepharose 4B, gel filtration, and repeated chromatography on carboxymethyl-Sepharose CL-6B. The protein kinase preparations have the highest specific activities (up to 656 nanomoles phosphate incorporated per minute per milligram of protein) yet reported for plant protein kinases. The major polypeptides in purified preparations were revealed as two barely-resolved bands (molecular weight 31,000) on polyacrylamide gel electrophoresis in subunit-dissociating conditions. The molecular size of the protein kinase as determined from gel filtration is 30,000. The protein kinase catalyzes the phosphorylation of casein, phosvitin, and the wheat germ cyclic AMP-binding protein cABPII but not of bovine serum albumin and histones nor of the wheat germ cytokinin-binding protein CBP. The protein kinase has a pH optimum of 7.9 and a Km value for ATP of 10 micromolar. The protein kinase differs from wheat germ CBP kinase in molecular weight, differential sensitivity to inhibitors, and in substrate specificity.  相似文献   

2.
Protein tyrosine kinase was purified extensively from a 30,000 X g particulate fraction of bovine spleen by a procedure involving four column chromatographies: DEAE-Sepharose, polyamino acids affinity, hydroxylapatite, and Sephacryl S-200 molecular sieving. The purification resulted in more than 3,000-fold enrichment in [Val5]angiotensin II phosphorylation activity (specific activity 202 nmol/min/mg). All column chromatography profiles showed single protein tyrosine kinase activity peaks with the exception of that of affinity chromatography, where about 50% of the enzyme activity appeared with the breakthrough fraction; only the bound enzyme was further purified. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of a purified sample phosphorylated in the presence of [gamma-32P]ATP revealed the presence of a single phosphorylated polypeptide of molecular weight 50,000 which represents about 40% of total protein. Analysis by polyacrylamide gel electrophoresis under nondenaturing conditions showed that protein tyrosine kinase activity co-migrated with the phosphoprotein. Stoichiometry of the phosphorylation of the 50-kDa polypeptide was found to be 1.0 mol/mol. The purified sample did not appear to contain phosphotyrosine protein phosphatase activity. Both casein and histone could be phosphorylated by the purified sample, and the phosphorylation occurred only at tyrosine residue, suggesting that there was no protein serine and threonine kinase contamination.  相似文献   

3.
The ability of the wheat germ initiation factors and ribosomes to serve as substrates for a wheat germ protein kinase (Yan and Tao 1982 J Biol Chem 257: 7037-7043) has been investigated. The wheat germ kinase catalyzes the phosphorylation of the 42,000 dalton subunit of eukaryotic initiation factor (eIF)-2 and the 107,000 dalton subunit of eIF-3. Other initiation factors, eIF-4B and eIF-4A, and elongation factors, EF-1 and EF-2, are not phosphorylated by the kinase. Quantitative analysis indicates that the kinase catalyzes the incorporation of about 0.5 to 0.6 mole of phosphate per mole of the 42,000 dalton subunit of eIF-2 and about 6 moles of phosphate per mole of the 107,000 dalton subunit of eIF-3. Three proteins (Mr = 38,000, 14,800, and 12,600) of the 60S ribosomal subunit are phosphorylated by the kinase, but none of the 40S ribosomal proteins are substrates of the kinase. No effects of phosphorylation on the activities of eIF-2, eIF-3, or 60S ribosomal subunits could be demonstrated in vitro.  相似文献   

4.
A new eukaryotic initiation factor 2 kinase has been purified for the first time from calf brain cytosol. The purification of a nonabundant novel protein kinase activity, designated as PKI, that phosphorylates the alpha subunit of eukaryotic initiation factor 2 is described. The protein kinase activity was assayed using purified initiation factor 2 as a substrate and was purified by ammonium sulphate precipitation, conventional chromatography in heparin-Sepharose and phosphocellulose and by high performance size exclusion and anion exchange chromatographies. The protein kinase activity elutes in the region of 140,000 in the size exclusion chromatography and is associated with two different polypeptides a and b, with relative molecular masses of 38,000 and 20,000 and an approximate ratio of 2.5-3.0:1. The protein kinase does not phosphorylate casein or histones and it is independent of cyclic nucleotides. It can be classified as a serine kinase since the phosphorylation of the alpha subunit of eIF-2 is produced in serine residues. Under these conditions none of the kinase subunits are phosphorylated.  相似文献   

5.
T F Yan  M Tao 《Biochemistry》1983,22(23):5340-5346
The reversibility of the reactions catalyzed by the wheat germ kinase and the cyclic AMP independent protein kinases isolated from human erythrocytes (casein kinases A and G) and rabbit skeletal muscle (casein kinases I and II) has been investigated. The reverse reaction requires ADP, Mg2+, phosphoprotein, and kinase and results in the formation of ATP from the phosphoprotein and ADP. The requirement for ADP in the wheat germ kinase and casein kinases II and G catalyzed reactions appears to be nonspecific. These kinases can also utilize GDP, IDP, and UDP as phosphoryl acceptors. Studies with the wheat germ protein T-substrate indicate that the phosphorylation of this protein substrate by the kinases is fully reversible. By contrast, the phosphorylation of phosvitin and casein is only partially reversible. Since the T-substrate is found to contain multiple phosphorylation sites and can serve as phosphoryl acceptor for the various kinases, the specificity of the phosphorylation of the substrate by the kinases is examined by way of the reverse reaction. The wheat germ kinase, casein kinase G, and casein kinase II appear to phosphorylate the same sites on the T-substrate as they are capable of completely dephosphorylating each other's 32P-T-substrate. Each of these kinases can catalyze the incorporation of 12 mol of 32P/48 000 g of T-substrate. In contrast, casein kinases A and I can incorporate only 6 mol of 32P/48 000 g of T-substrate. Studies on the reverse reactions suggest that these phosphorylation sites may be the same for both enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.  相似文献   

7.
Two cyclic AMP-independent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) (casein kinase 1 and 2) have been purified from rat liver cytosol by a method involving chromatography on phosphocellulose and casein-Sepharose 4B. Both kinases were essentially free of endogeneous protein substrates and capable of phosphorylating casein, phosvitin and I-form glycogen synthase, but were inactive on histone IIA, protamine and phosphorylase b. They were neither stimulated by cyclic AMP, Ca2+ and calmodulin, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. The casein and glycogen synthase kinase activities of each enzyme decreased at the same rate when incubated at 50 degrees C. Casein kinase 1 and casein kinase 2 showed differences in molecular weight, sensitivity to KCl, Km for casein and phosvitin and Ka for Mg2+, whereas their Km values for ATP and I-form glycogen synthase were similar. The phosphorylation of glycogen synthase by these kinases correlated with a decrease in the +/- glucose 6-phosphate activity ratio (independence ratio). However, casein kinase 1 catalyzed the incorporation of about 3.6 mol of 32P/85000 dalton subunit, decreasing the independence ratio from 83 to about 15, whereas the phosphorylation achieved by casein kinase 2 was only about 1.9 mol of 32P/850000 dalton subunit, decreasing the independence ratio to about 23. The independence ratio decrease was prevented by the presence of casein but was unaffected by phosphorylase b. These data indicate that casein/glycogen synthase kinases 1 and 2 are different from cyclic AMP-dependent protein kinase and phosphorylase kinase.  相似文献   

8.
A serine protein kinase that phosphorylates the beta-subunit of the insulin receptor has been partially purified 5,000-fold from HeLa cell membranes. The enzyme has been purified by ion-exchange and hydroxylapatite chromatography and sucrose gradient centrifugation; it has an apparent molecular weight of 36,000-43,000 daltons. It exhibits the following properties: (a) it catalyzes the phosphorylation of the autophosphorylated insulin receptor more efficiently than the nonautophosphorylated insulin receptor, (b) it decreases insulin receptor phosphorylation of tubulin but has no effect on insulin receptor phosphorylation of microtubule-associated proteins or reduced and carboxyamidomethylated lysozyme. The enzyme also phosphorylates casein and ribosomal protein S6 and shares many properties with casein kinase I: (a) similar molecular weight, (b) utilization of ATP but not GTP as phosphoryl donor, and (c) sensitivity to inhibition by heparin. Based on several criteria the receptor serine kinase is neither protein kinase C nor the cAMP-dependent protein kinase.  相似文献   

9.
Increases in protein kinase-catalyzed phosphorylation of a 22 000 dalton protein correlated closely with increases in phosphate-facilitated calcium transport measured concurrently in canine cardiac sarcoplasmic reticulum under similar conditions in the presence of varying concentrations of bovine cardiac protein kinase. A correlation coefficient of 0.93 and a P value of < 0.001 were obtained. Protein kinase-catalyzed phosphorylation of the 22 000 dalton microsomal protein may mediate the abbreviation of systole seen in the mammalian heart in response to inotropic agents like catecholamines.  相似文献   

10.
The 40 000 g supernatant and 40 000 g pellet from extracts of germinated pollen of Nicotiana alata Link et Otto contain protein kinase activity which catalyzes the phosphorylation of histones, casein and a range of endogenous polypeptides. Phosphorylation of certain low-molecular-weight, casein-derived polypeptides is activated at low (12–37 μ M ) and partially inhibited at higher (540 μ M ) concentrations of free Ca2+. Histone phosphorylation is largely Ca2+-dependent and is activated by 540 μM free Ca2+. No activation of protein phosphorylation by micromolar concentrations of calmodulin is found, but phenothiazine-derived calmodulin antagonists markedly stimulate protein phosphorylation.  相似文献   

11.
Double-stranded RNA (dsRNA) activates a cyclic 3′: 5′-AMP independent protein kinase (dsI) in reticulocyte lysates which inhibits protein synthesis by phosphorylating the 38, 000 dalton (38K) subunit of the initiation factor eIF-2 (eIF-2α). A latent precursor form of dsI (latent dsI) has been partially purified (1000–2000 fold) from lysates. Activation of dsI at all stages in the purification of latent dsI requires ATP and low levels of dsRNA (1–20 ng/ml), and is accompanied by the phosphorylation of a broad 67,000 dalton (67K) band. However, as purification proceeds the 67K band is resolved into two phosphorylated polypeptides of 68,500 and 67,000 daltons (68.5K67K). Although latent dsI and activated dsI have distinctly different chromatographic properties, both forms have similar molecular weights (~120,000) and similar sedimentation coefficients (~3.8S) in glycerol gradients. The data support the view that one or both components of the 68.5K67K doublet are associated with the dsRNA-dependent protein kinase activity.  相似文献   

12.
A Mn2(+)-dependent serine/threonine protein kinase from rat liver membranes copurifies with the insulin receptor (IR) on wheat germ agglutinin (WGA)-sepharose. The kinase is present in a nonactivated form in membranes but can be activated 20-fold by phosphorylating the WGA-sepharose fraction with casein kinase-1 (CK-1), casein kinase-2 (CK-2), or casein kinase-3 (CK-3). The activated kinase can use IR beta-subunit, myelin basic protein, and histones as substrates. Activation of the kinase seems to proceed by two or more steps. Sodium vanadate and Mn2+ are required in reaction mixtures for activation to be observed, whereas the tyrosine kinase-specific substrate, poly (glu, tyr), completely inhibits activation. These observations suggest that, in addition to serine/threonine phosphorylation by one of the casein kinases, activation of the Mn2(+)-dependent protein kinase also requires tyrosine phosphorylation. Such phosphorylation may be catalyzed by the IR tyrosine kinase.  相似文献   

13.
cAMP-independent protein kinase was isolated from the wheat germ and purified to electrophoretic homogeneity. The molecular weight of enzyme was approximately 20,000, Km for ATP was (1 +/- 0.2) x 10(-5) M. V was 215 nmol phosphate mg enzyme-1 min-1, and the isoelectric point was at pH 9.2. The enzyme promotes phosphorylation of casein and crude wheat germ ribosomes.  相似文献   

14.
A protein kinase, type NII, has been purified from wheat germ chromatin. The enzyme, which uses both ATP and GTP as phosphoryl donors, catalyzes the phosphorylation of casein, phosvitin and E. coli RNA polymerase, but not of histone proteins. Polypeptide bands at 46 kDa, 37 kDa and 25 kDa were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autophosphorylation of the 25 kDa subunit was observed following incubation of the purified kinase with (-32P)ATP and (-32P)GTP.  相似文献   

15.
Aspartate kinase is a feedback-regulated enzyme that controls the first step common to the biosynthesis of lysine, threonine, isoleucine, and methionine in plants. Aspartate kinase was purified from Black Mexican Sweet maize (Zea mays L.) cell suspension cultures for physical and kinetic characterization studies. Partial purification and elution from an anion exchange column resolved two lysine-sensitive aspartate kinase isoforms. Both isoforms were purified >1,200-fold to a minimum specific activity of 18 units/milligram of protein. Both isoforms were sensitive to the lysine analogues S-2-aminoethyl-l-cysteine, l-lysine ethyl ester, and δ-hydroxylysine. No threonine-sensitive form of aspartate kinase was detected at any stage during the purification. Additional purification steps were combined with preparative gel electrophoresis to obtain apparently homogeneous lysine-sensitive aspartate kinase. Aspartate kinase appeared to be a tetramer with a holoenzyme molecular weight of 254,000 and to be composed of 49,000 and 60,000 subunits. The tetramer appeared to disassociate during native gel electrophoresis to 113,000 dalton species that retained aspartate kinase activity.  相似文献   

16.
The AMP-activated protein kinase (AMPK) and AMPK-related kinase salt-inducible kinase 3 (SIK3) regulate many important biological processes ranging from metabolism to sleep. Liver kinase B1 is known to phosphorylate and activate both AMPK and SIK3, but the existence of other upstream kinases was unclear. In this study, we detected liver kinase B1–independent AMPK-related kinase phosphorylation activities in human embryonic kidney cells as well as in mouse brains. Biochemical purification of this phosphorylation activity uncovered mammalian sterile 20–like kinase 3 (MST3). We demonstrate that MST3 from human embryonic kidney cells could phosphorylate AMPK and SIK3 in vivo. In addition, recombinant MST3 expressed in and purified from Escherichia coli could directly phosphorylate AMPK and SIK3 in vitro. Moreover, four other members of the MST kinase family could also phosphorylate AMPK or SIK3. Our results have revealed new kinases able to phosphorylate and activate AMPK and SIK3.  相似文献   

17.
J Kuret  H Schulman 《Biochemistry》1984,23(23):5495-5504
A soluble Ca2+/calmodulin-dependent protein kinase has been purified from rat brain to near homogeneity by using casein as substrate. The enzyme was purified by using hydroxylapatite adsorption chromatography, phosphocellulose ion-exchange chromatography, Sepharose 6B gel filtration, affinity chromatography using calmodulin-Sepharose 4B, and ammonium sulfate precipitation. On sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gels, the purified enzyme consists of three protein bands: a single polypeptide of 51 000 daltons and a doublet of 60 000 daltons. Measurements of the Stokes radius by gel filtration (81.3 +/- 3.7 A) and the sedimentation coefficient by sucrose density sedimentation (13.7 +/- 0.7 S) were used to calculate a native molecular mass of 460 000 +/- 29 000 daltons. The kinase autophosphorylated both the 51 000-dalton polypeptide and the 60 000-dalton doublet, resulting in a decreased mobility in NaDodSO4 gels. Comparison of the phosphopeptides produced by partial proteolysis of autophosphorylated enzyme reveals substantial similarities between subunits. These patterns, however, suggest that the 51 000-dalton subunit is not a proteolytic fragment of the 60 000-dalton doublet. Purified Ca2+/calmodulin-dependent casein kinase activity was dependent upon Ca2+, calmodulin, and ATP X Mg2+ or ATP X Mn2+ when measured under saturating casein concentrations. Co2+, Mn2+, and La3+ could substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations. In addition to casein, the purified enzyme displayed a broad substrate specificity which suggests that it may be a "general" protein kinase with the potential for mediating numerous processes in brain and possibly other tissues.  相似文献   

18.
We have previously shown that 2,3-diphosphoglycerate (2,3-DPG) inhibits the phosphorylation of erythrocyte membrane cytoskeletal proteins by endogenous casein kinases. Here, we report that 2,3-DPG stimulates the phosphorylation of protein 4.1 by protein kinase C. Studies with red cell membrane preparations showed that while the phosphorylation of most of the membrane proteins by endogenous membrane-bound kinases and purified kinase C was inhibited by 2,3-DPG, the phosphorylation of protein 4.1 was slightly enhanced by the metabolite. The effect of 2,3-DPG was further examined using purified protein 4.1 preparations. Our results indicate that 2,3-DPG stimulates both the rate and the extent of phosphorylation of purified protein 4.1 by kinase C. The amount of phosphate incorporated was found to double to 2 mol of phosphate per mole of protein 4.1 in the presence of 10 mM 2,3-DPG. The increase in phosphorylation was distributed over all phosphorylation sites as revealed by an analysis of the labeling patterns of phosphopeptides resolved by high performance liquid chromatography, but a significantly higher incorporation was detected in two of the phosphopeptides. The stimulatory effect of 2,3-DPG on the phosphorylation of protein 4.1 was observed only with kinase C. Phosphorylation by the cytosolic erythrocyte casein kinase and the cyclic AMP-dependent protein kinase was inhibited by 2,3-DPG. Moreover, the stimulatory effect of 2,3-DPG seemed to be unique to the phosphorylation of protein 4.1 since a similar effect had not been observed with other protein kinase C substrates. Our results suggest that 2,3-DPG may play an important role in the regulation of cytoskeletal interactions.  相似文献   

19.
Purification and characterization of a protein kinase from pine pollen   总被引:1,自引:0,他引:1  
A kinase phosphorylating casein and phosvitin has been purified from pine pollen by a three-step procedure involving DEAE-cellulose chromatography, affinity chromatography on casein-Sepharose and Sephadex G-100. A purification of about 2000 fold was obtained by this procedure. The kinase is affected neither by cyclic nucleotides nor by Ca2+-calmodulin, whereas it is strongly inhibited by heparin. Using this purification procedure, we have isolated protein kinase exhibiting phosphorylating activity towards casein in the pollen of many other Pinaceae species.  相似文献   

20.
Caseins were separated from whey proteins by acid precipitation of skimmed rabbit milk. Whole casein was resolved by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis into three major bands with apparent relative molecular masses (Mr of 31 000, 29 000 and 25 000. On agarose/urea-gel electrophoresis whole casein gave three bands with electrophoretic mobilities alpha, beta and gamma. The three components were purified by DEAE-cellulose chromatography under denaturing and reducing conditions. Each was shown to have a different amino acid, hexose and phosphorus content, as well as non-identical peptide fragments after proteinase digestion. The 31 000 Da (dalton) protein, of alpha-electrophoretic mobility, had a high phosphorus content (4.38%, w/w); the 29 000 Da peptide, of gamma-mobility, had the highest hexose content (2.2%, w/w), contained 0.8 cysteine residue per 100 amino acid residues and was susceptible to chymosin digestion corresponding thus to kappa-casein; the 25 000 Da protein migrated to the beta-position. The rabbit casein complex is composed of at least three caseins, two of which (alpha- and kappa-caseins) are analogous to the caseins from ruminants. Although caseins are poor immunogens, specific antibodies were raised against total and purified polypeptides. The antiserum directed against whole casein recognized each polypeptide, each casein corresponding to a distinct precipitation line. The antisera directed against each casein polypeptide reacted exclusively with the corresponding casein and no antiserum cross-reaction occurred between the three polypeptides. From whey, several proteins were isolated, characterized and used as antigens to raise specific antibodies. An iron-binding protein with an apparent Mr of 80 000 was shown to be immunologically and structurally identical with serum transferrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号