首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Structure and function of Syk protein-tyrosine kinase   总被引:31,自引:0,他引:31  
Non-receptor type of protein-tyrosine kinase Syk contains 2 Src homology 2 (SH2) domains in tandem and multiple autophosphorylation sites. Syk is activated upon binding of tandem SH2 domains to immunoreceptor tyrosine-based activating motif (ITAM) and plays an essential role in lymphocyte development and activation of immune cells. Syk is critical for tyrosine phosphorylation of multiple proteins which regulate important pathways leading from the receptor, such as Ca(2+) mobilization and mitogen-activated protein kinase (MAPK) cascades. Recent findings reveal that expression of Syk appears to be involved in a wide variety of cellular functions and pathogenesis of malignant cancer. These observations have demonstrated that Syk is a key molecule that controls multiple physiological functions in cells.  相似文献   

2.
Protein-tyrosine kinase-6 (PTK6, also known as Brk) is a non-receptor tyrosine kinase that contains SH3, SH2, and catalytic (Kinase) domains. We have identified an intramolecular interaction between the linker (Linker) region connecting the SH2 and Kinase domains and the Kinase domain. Residue Trp-184 within the Linker region is essential for the Linker-Kinase interaction but not for the Linker-SH3 interaction. A recombinant PTK6 Kinase domain connected to the Linker region had catalytic activity in terms of autophosphorylation, phosphorylation of a PTK6 substrate, BKS, and phosphorylation of an oligopeptide substrate, whereas the Kinase domain itself, or one connected to a Linker region containing a W184A substitution, did not. The introduction of the W184A mutation into PTK6 also abrogated autophosphorylation and phosphorylation of another PTK6 substrate, Sam68, as well as phosphorylation of intracellular proteins. It also abolished the ability of PTK6 to promote proliferation and prevent apoptosis of HEK 293 cells, as well as to permit anchorage-independent colony formation. Therefore, unlike Src family members, in which the Linker-Kinase interaction inhibits catalytic activity, in PTK6 this interaction has an essential positive role.  相似文献   

3.
The correct functioning of Ras proteins requires post-translational modification of the GTP hydrolases (GTPases). These modifications provide hydrophobic moieties that lead to the attachment of Ras to the inner side of the plasma membrane. In this study we investigated the role of Ras processing in the interaction with various putative Ras-effector proteins. We describe a specific, GTP-independent interaction between post-translationally modified Ha- and Ki-Ras4B and the G-protein responsive phosphoinositide 3-kinase p110gamma. Our data demonstrate that post-translational processing increases markedly the binding of Ras to p110gamma in vitro and in Sf9 cells, whereas the interaction with p110alpha is unaffected under the same conditions. Using in vitro farnesylated Ras, we show that farnesylation of Ras is sufficient to produce this effect. The complex of p110gamma and farnesylated RasGTP exhibits a reduced dissociation rate leading to the efficient shielding of the GTPase from GTPase activating protein (GAP) action. Moreover, Ras processing affects the dissociation rate of the RasGTP complex with the Ras binding domain (RBD) of Raf-1, indicating that processing induces alterations in the conformation of RasGTP. The results suggest a direct interaction between a moiety present only on fully processed or farnesylated Ras and the putative target protein p110gamma.  相似文献   

4.
5.
6.
Phosphoinositide 3-kinase (PI(3)K) is a unique enzyme characterized by both lipid and protein kinase activities. Here, we demonstrate a requirement for the protein kinase activity of PI(3)K in agonist-dependent beta-adrenergic receptor (betaAR) internalization. Using PI(3)K mutants with either protein or lipid phosphorylation activity, we identify the cytoskeletal protein non-muscle tropomyosin as a substrate of PI(3)K, which is phosphorylated in a wortmannin-sensitive manner on residue Ser 61. A constitutively dephosphorylated (S61A) tropomyosin mutant blocks agonist-dependent betaAR internalization, whereas a tropomyosin mutant that mimics constitutive phosphorylation (S61D) complements the PI(3)K mutant, with only lipid phosphorylation activity reversing the defective betaAR internalization. Notably, knocking down endogenous tropomyosin expression using siRNAs that target different regions if tropomyosin resulted in complete inhibition of betaAR endocytosis, showing that non-muscle tropomyosin is essential for agonist-mediated receptor internalization. These studies demonstrate a previously unknown role for the protein phosphorylation activity of PI(3)K in betaAR internalization and identify non-muscle tropomyosin as a cellular substrate for protein kinase activity of PI(3)K.  相似文献   

7.
Diacylglycerol kinase alpha (DAGK alpha), like all type I DAGKs, has calcium regulatory motifs that act as negative regulators of enzyme activity and localization. Accordingly, DAGK alpha is activated by phospholipase C-coupled receptors in a calcium-dependent manner. One of the first functions attributed to DAGK alpha in lymphocytes was that of regulating interleukin 2-induced cell cycle entry. Interleukin-2 nonetheless exerts its action in the absence of cytosolic calcium increase. We have studied alternative receptor-derived signals to explain calcium-independent DAGK alpha activation, and show that DAGK alpha is stimulated by Src-like kinase-dependent phosphoinositide 3 kinase (PI3K) activation in lymphocytes. Our results demonstrate that, in vivo, the increase in cellular levels of PI3K products is sufficient to induce DAGK alpha activation, allowing DAGK alpha relocation to the intact lymphocyte plasma membrane. This activation is isoform-specific, because other type I DAGKs are not subject to this type of regulation. These studies are the first to describe a pathway in which, in the absence of receptor-regulated calcium increase, DAGK alpha activation and membrane localization is a direct consequence of PI3K activation.  相似文献   

8.
Syk is a 72-kDa protein-tyrosine kinase that regulates signaling through multiple cell surface receptors including those for antigens, immunoglobulins and proteins of the extracellular matrix. As part of its function, Syk binds a variety of downstream effectors through interactions that are often mediated by motifs that recognize phosphotyrosines. In a search for novel Syk-interacting proteins by yeast two-hybrid analysis, we identified tensin2 as a Syk-binding protein. Syk interacts with a fragment of tensin2 located near the C-terminus that contains SH2 and PTB domains. In epithelial cells, tensin2 localizes both to focal adhesions and to large cytoplasmic puncta. It is within these punctuate structures that Syk and tensin2 are co-localized. The clustering of Syk within these structures leads to its phosphorylation on tyrosine.  相似文献   

9.
Steele RE  Stover NA  Sakaguchi M 《Gene》1999,239(1):91-97
Syk family protein-tyrosine kinases are essential components of immunoreceptor signaling in mammalian lymphocytes. The absence of Syk genes from the Caenorhabditis elegans genome suggests that this kinase family is of recent evolutionary origin. Surprisingly, we have found that Hydra vulgaris, a member of the early diverging animal phylum Cnidaria, contains a gene encoding a Syk kinase. Phylogenetic analysis indicates that a single Syk family gene was present in animals prior to the gene duplication that gave rise to Syk and ZAP-70, the two mammalian Syk family genes. C. elegans also lacks a Shark protein-tyrosine kinase gene, which we show is a member of a sister group to the Syk family. We conclude that both Syk and Shark genes were lost from the genome of an ancestor of C. elegans. This natural gene knockout result indicates that neither Syk nor Shark kinases are essential for processes held in common between the nematode and other metazoans. The Hydra Syk gene is expressed in epithelial cells, a site consistent with a role for Hydra Syk in recognition of foreign cells.  相似文献   

10.
Syk is a tyrosine kinase which is indispensable in immunoglobulin Fc receptor- and B cell receptor-mediated signal transduction in various immune cells. This pathway is important in the pathophysiology of allergy. In this study we established a quantitative nonradioactive kinase assay to identify inhibitors of Syk. We used recombinant GST-tagged Syk purified from baculovirus-infected insect cells. As a substrate, biotinylated peptide corresponding to the activation loop domain of Syk, whose tyrosine residues are autophosphorylated upon activation, was employed to screen both ATP- and substrate-competitive inhibitors. After the kinase reaction in solution phase, substrate was trapped on a streptavidin-coated plate, followed by detection of the phosphorylated tyrosine with europium-labeled anti-phosphotyrosine antibody. The kinase reaction in solution phase greatly enhanced phosphorylation of substrate compared to that of plate-coated substrate. High signal-to-background ratio and low data scattering were obtained in the optimized high-throughput screening (HTS) format. Further, several kinase inhibitors showed concentration-dependent inhibition of recombinant Syk kinase activity with almost the same efficacy for immunoprecipitated Syk from a human cell line. These data suggest that this assay is useful to screen Syk kinase inhibitors in HTS.  相似文献   

11.
Vascular endothelial growth factor (VEGF)-A stimulates formation of new blood vessels (angiogenesis). This process includes migration of endothelial cells from the preexisting vessel toward the source of the growth factor. We show that VEGF-A-induced migration of porcine aortic endothelial cells expressing VEGF receptor-2 (VEGFR-2) is dependent on activation of phosphoinositide 3-kinase (PI3-kinase). There is no direct interaction between VEGF receptor-2 and PI3-kinase; instead PI3-kinase is activated downstream of focal adhesion kinase (FAK) in VEGF-A-stimulated cells. Thus, VEGF-A stimulation leads to complex formation between FAK and PI3-kinase and overexpression of dominant-negative FAK decreases VEGF-A-induced PI3-kinase activation. FAK activation by VEGF-A increases with increasing concentration of growth factor, without apparent collapse of the cytoskeleton, in contrast to the effect of platelet-derived growth factor. FAK activation is mediated via the C-terminal tail of VEGFR-2 and loss of VEGF-A-induced FAK activation in cells expressing mutant VEGFR-2 correlates with loss of migration capacity. These data show that VEGF-A-induced FAK and PI3-kinase activation are required for migration of cells expressing VEGFR-2, via a pathway independent of direct interaction with the receptor.  相似文献   

12.
Lee SB  Cho ES  Yang HS  Kim H  Um HD 《Cellular signalling》2005,17(2):197-204
Reactive oxygen species (ROS) can be generated following cell stimulation and function as intracellular signaling molecules. To determine signaling components involved in ROS induction, human U937 blood cells grown in 10% serum were exposed to serum-free media. It was previously reported that serum withdrawal (SW) killed cells by elevating cellular ROS levels. This study showed that SW activates phosphoinositide 3-kinase (PI3K). PI3K activation was evident after the ROS levels began increasing, and an antioxidant blockade of this increase resulted in PI3K activation suppression. Interestingly, the inhibition of PI3K activity/activation using either its specific inhibitor or dominant-negative mutant attenuated the subsequent additional increase in the ROS levels. These results suggest that SW-induced ROS activate PI3K, which in turn promotes the process leading to ROS accumulation. The present study also revealed that both ROS and PI3K support SW-induced cell death by activating stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Overall, it appears that SW triggers a positive mutual interaction between ROS and PI3K, which amplifies signals required for the induction of an SAPK-dependent death pathway.  相似文献   

13.
Previous work has demonstrated the ability of the NG2 proteoglycan, a component of microvascular pericytes, to stimulate endothelial cell motility and morphogenesis. This function of NG2 depends on formation of a complex with galectin-3 and alpha3beta1 integrin to stimulate integrin-mediated transmembrane signaling. In addition, the co-expression of galectin-3 and NG2 in A375 melanoma cells suggests that the malignant properties of these cells may be affected by interaction between the two molecules. Here, we extend the theme of co-expression and interaction of NG2 and galectin-3 to human glioma cells. We also establish a molecular basis for the NG2/galectin-3 interaction. The C-terminal carbohydrate recognition domain of galectin-3 is responsible for binding to the NG2 core protein. Within the NG2 extracellular domain, the membrane-proximal D3 segment of the proteoglycan contains the primary binding site for interaction with galectin-3. The interaction between galectin-3 and NG2 is a carbohydrate-dependent one mediated by N-linked rather than O-linked oligosaccharides within the D3 domain of the NG2 core protein. These studies establish a foundation for attempts to reduce the aggressive properties of tumor cells by disrupting the NG2/galectin-3 interaction.  相似文献   

14.
Human tumours emerge as the result of multiple genetic and epigenetic aberrations that allow the proto-cancer cell to escape normal social control. Many signal transduction pathways become constitutively active during this process, and one whose importance is increasingly being appreciated involves phosphoinositide 3-kinase (PI3-kinase). This pathway normally regulates important cell decisions such as growth, division, survival and migration, and when deregulated it can confer malignant potential to the ensuing tumour. However, constitutive activation of the PI3-kinase pathway might provide attractive therapeutic targets for the design of small-molecule inhibitors. This review discusses events upstream and downstream of PI3-kinase activity in the PI3-kinase signalling pathway, how PI3-kinase is deregulated in human tumourigenesis, and how this is being targeted clinically.  相似文献   

15.
One potentially important mechanism for regulating class Ia phosphoinositide 3-kinase (PI 3-kinase) activity is autophosphorylation of the p85 alpha adapter subunit on Ser608 by the intrinsic protein kinase activity of the p110 catalytic subunit, as this downregulates the lipid kinase activity in vitro. Here we investigate whether this phosphorylation can occur in vivo. We find that p110 alpha phosphorylates p85 alpha Ser608 in vivo with significant stoichiometry. However, p110 beta is far less efficient at phosphorylating p85 alpha Ser608, identifying a potential difference in the mechanisms by which these two isoforms are regulated. The p85 alpha Ser608 phosphorylation was increased by treatment with insulin, platelet-derived growth factor, and the phosphatase inhibitor okadaic acid. The functional effects of this phosphorylation are highlighted by mutation of Ser608, which results in reduced lipid kinase activity and reduced association of the p110 alpha catalytic subunit with p85 alpha. The importance of this phosphorylation was further highlighted by the finding that autophosphorylation on Ser608 was impaired, while lipid kinase activity was increased, in a p85 alpha mutant recently discovered in human tumors. These results provide the first evidence that phosphorylation of Ser608 plays a role as a shutoff switch in growth factor signaling and contributes to the differences in functional properties of different PI 3-kinase isoforms in vivo.  相似文献   

16.
We have reported previously that Ras interacts with the catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase) in a GTP-dependent manner. The affinity of the interaction of Ras-GTP with p85alpha/p110alpha is shown here to be approximately 150 nM. The site of interaction on the p110alpha and beta isoforms of PI 3-kinase lies between amino acid residues 133 and 314. A point mutation in this region, K227E, blocks the GTP-dependent interaction of PI 3-kinase p110alpha with Ras in vitro and the ability of Ras to activate PI 3-kinase in intact cells. In addition, this mutation elevates the basal activity of PI 3-kinase in intact cells, suggesting a direct influence of the Ras binding site on the catalytic activity of PI 3-kinase. Using an in vitro reconstitution assay, it is shown that the interaction of Ras-GTP, but not Ras-GDP, with PI 3-kinase leads to an increase in its enzymatic activity. This stimulation is synergistic with the effect of tyrosine phosphopeptide binding to p85, particularly at suboptimal peptide concentrations. These data show that PI 3-kinase is regulated by a number of mechanisms, and that Ras contributes to the activation of this lipid kinase synergistically with tyrosine kinases.  相似文献   

17.
Focal adhesion kinase (FAK) and CD4 fulfil vital functions in cellular signal transduction: FAK is a central component in integrin signalling, whereas CD4 plays essential roles in the immune defence. In T lymphocytes, FAK and CD4 localise to the same signalling complexes after stimulation by either the human immunodeficiency virus (HIV) gp120 glycoprotein or an antigen, suggesting the concerted action of FAK and CD4 in these cells. Using crystallography and microcalorimetry, we here show that the focal adhesion targeting (FAT) domain of FAK binds specifically to the CD4 endocytosis motif in vitro. This FAT-CD4 complex is structurally and thermodynamically similar to the one FAT forms with paxillin LD motifs. The CD4 binding site on FAT presents the same features as the established CD4 binding site on the HIV-1 Nef protein. The binding of FAT to CD4 is incompatible with the binding of Lck to CD4. We further show that HIV-1 gp120 triggers the association of CD4 with FAK in T cells, under conditions that are known to dissociate Lck from CD4. Our results suggest that the FAK-CD4 complex represents an alternative route for eliciting T-cell-specific signals and that it links gp120 engagement to distinctive T-cell signalling during HIV infection. In infected cells, HIV-1 Nef may displace FAK from CD4 to protect the cells from apoptosis.  相似文献   

18.
Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires 相似文献   

19.
Classical cadherin adhesion molecules can function as adhesion-activated cell-signaling receptors. One key target for cadherin signaling is the lipid kinase phosphoinositide (PI) 3-kinase, which is recruited to cell-cell contacts and activated by E-cadherin. In this study, we sought to identify upstream factors necessary for E-cadherin to activate PI 3-kinase signaling. We found that inhibition of tyrosine kinase signaling blocked recruitment of PI 3-kinase to E-cadherin contacts and abolished the ability of E-cadherin to activate PI 3-kinase signaling. Tyrosine kinase inhibitors further perturbed several parameters of cadherin function, including cell adhesion and the ability of cells to productively extend nascent cadherin-adhesive contacts. Notably, the functional effects of tyrosine kinase blockade were rescued by expression of a constitutively active form of PI 3-kinase that restores PI 3-kinase signaling. Finally, using dominant negative Src mutants and Src-null cells, we identified Src as one key upstream kinase in the E-cadherin/PI 3-kinase-signaling pathway. Taken together, our findings indicate that tyrosine kinase activity, notably Src signaling, can contribute positively to cadherin function by supporting E-cadherin signaling to PI 3-kinase.  相似文献   

20.
Zou W  Li ZY  Li CL  Cui ZC 《生理科学进展》2000,31(2):120-124
蛋白激酶B(PKB)是原癌基因c-akt的表达产物,它参与由生长因子激活的经磷脂磷肌醇3-激酶(PI3K)介导的信号转导过程。与许多蛋白激酶相似,PKB分子具有一特殊的AH/PH结构域(AH/PHdomain),后者能介导信号分子间的相互作用。PKB是PI3K直接的靶蛋白。PI3K产生的脂类第二信使PI-3,4,P2和PI-3,4,5-P3等均能与PKB和磷酸肌醇依赖性蛋白激酶(PDK)的AH/P  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号