首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Melanoma is the most severe of all skin cancers as it may grow rapidly and metastasize. The application of photodynamic therapy (PDT) opens new perspectives in treatment of this cancer. Numerous studies suggest that the exposure of tumor cells to PDT can lead to cell death via two separate processes: apoptosis or necrosis. The aim of this study was to assess in vitro photodynamic therapy which induces apoptosis in the human Beidegr?m Melanoma (BM) cell line, using neutral comet assay. The cells were incubated with Photofrin II (15 microg/ml and 30 microg/ml) 4 h before and 3 h after irradiation for 5 or 10 min with the light intensity of 10 mW/cm2, using a lamp with red filter (632.8 nm). The percentage of apoptotic cells was significantly higher after PDT comparing to control cells. We observed 25% and 70% of apoptotic cells after shorter irradiation and treatment with 15 microg/ml and 30 microg/ml of Ph II, respectively. After longer irradiation, the respective values were 71.9% and 90%. The results suggest that induction of apoptosis is an important determinant of photodynamic sensitivity in the studied cell line and that some types of DNA damage are dependent on photosensitizer concentration and time of irradiation.  相似文献   

2.
In our screening program for new photosensitizers from the Malaysian biodiversity, we found five pheophorbide-related compounds from the leaves and stems of Aglaonema simplex. Detailed spectroscopic analyses showed that compounds 1-3 and 5 are pheophorbide and hydroxy pheophorbide derivatives of chlorophyll a and b. Compound 4, identified as 15(1)-hydroxypurpurin-7-lactone ethyl methyl diester, was isolated for the first time from the Araceae family. An MTT-based short-term survival assay showed that all five compounds exhibit moderate-to-strong photocytotoxic activities towards human leukemia (HL60) and two oral squamous carcinoma cell lines (HSC-2 and HSC-3). Compounds 4 and 5 showed the strongest photocytotoxicities, with IC(50) values of 0.30-0.41 muM (Table 2). Compounds 1-3 with Et chains at C(17(3)) were less photocytotoxic than the parent pheophorbide a (5).  相似文献   

3.
DH Kessel  M Price  JJ Reiners 《Autophagy》2012,8(9):1333-1341
Photodynamic therapy (PDT) involves photosensitizing agents that, in the presence of oxygen and light, initiate formation of cytotoxic reactive oxygen species (ROS). PDT commonly induces both apoptosis and autophagy. Previous studies with murine hepatoma 1c1c7 cells indicated that loss of autophagy-related protein 7 (ATG7) inhibited autophagy and enhanced the cytotoxicity of photosensitizers that mediate photodamage to mitochondria or the endoplasmic reticulum. In this study, we examined two photosensitizing agents that target lysosomes: the chlorin NPe6 and the palladium bacteriopheophorbide WST11. Irradiation of wild-type 1c1c7 cultures loaded with either photosensitizer induced apoptosis and autophagy, with a blockage of autophagic flux. An ATG7- or ATG5-deficiency suppressed the induction of autophagy in PDT protocols using either photosensitizer. Whereas ATG5-deficient cells were quantitatively similar to wild-type cultures in their response to NPe6 and WST11 PDT, an ATG7-deficiency suppressed the apoptotic response (as monitored by analyses of chromatin condensation and procaspase-3/7 activation) and increased the LD 50 light dose by > 5-fold (as monitored by colony-forming assays). An ATG7-deficiency did not prevent immediate lysosomal photodamage, as indicated by loss of the lysosomal pH gradient. However, unlike wild-type and ATG5-deficient cells, the lysosomes of ATG7-deficient cells recovered this gradient within 4 h of irradiation, and never underwent permeabilization (monitored as release of endocytosed 10-kDa dextran polymers). We propose that the efficacy of lysosomal photosensitizers is in part due to both promotion of autophagic stress and suppression of autophagic prosurvival functions. In addition, an effect of ATG7 unrelated to autophagy appears to modulate lysosomal photodamage.  相似文献   

4.
《Autophagy》2013,9(9):1333-1341
Photodynamic therapy (PDT) involves photosensitizing agents that, in the presence of oxygen and light, initiate formation of cytotoxic reactive oxygen species (ROS). PDT commonly induces both apoptosis and autophagy. Previous studies with murine hepatoma 1c1c7 cells indicated that loss of autophagy-related protein 7 (ATG7) inhibited autophagy and enhanced the cytotoxicity of photosensitizers that mediate photodamage to mitochondria or the endoplasmic reticulum. In this study, we examined two photosensitizing agents that target lysosomes: the chlorin NPe6 and the palladium bacteriopheophorbide WST11. Irradiation of wild-type 1c1c7 cultures loaded with either photosensitizer induced apoptosis and autophagy, with a blockage of autophagic flux. An ATG7- or ATG5-deficiency suppressed the induction of autophagy in PDT protocols using either photosensitizer. Whereas ATG5-deficient cells were quantitatively similar to wild-type cultures in their response to NPe6 and WST11 PDT, an ATG7-deficiency suppressed the apoptotic response (as monitored by analyses of chromatin condensation and procaspase-3/7 activation) and increased the LD50 light dose by > 5-fold (as monitored by colony-forming assays). An ATG7-deficiency did not prevent immediate lysosomal photodamage, as indicated by loss of the lysosomal pH gradient. However, unlike wild-type and ATG5-deficient cells, the lysosomes of ATG7-deficient cells recovered this gradient within 4 h of irradiation, and never underwent permeabilization (monitored as release of endocytosed 10-kDa dextran polymers). We propose that the efficacy of lysosomal photosensitizers is in part due to both promotion of autophagic stress and suppression of autophagic prosurvival functions. In addition, an effect of ATG7 unrelated to autophagy appears to modulate lysosomal photodamage.  相似文献   

5.
Porphyrin photosensitizers tend to localize in mitochondria. The depolarization of mitochondrial membrane is one of the early stages of apoptosis and Laser Scanning Fluorescence Microscopy allows to determine changes in transmembrane mitochondrial potential under influence of PDT depending on the kind of photosensitizer (PP(Arg)(2), Hp(Arg)(2)), the energy dose (5, 10, 30 and 50 J/cm(2)) and time periods (24 and 48 hours after irradiation) in the LNCaP (lymphonodal metastasis of prostate carcinoma, the androgen dependent cell line). Cyototoxicity induced by PP(Arg)(2)- and Hp(Arg)(2)-based PDT depending on energy dose and time after irradiation in prostate carcinoma is determined with MTT. Generally, it was shown that lower energy doses induce greater changes in transmembrane mitochondrial potential. Hp(Arg)(2)-based PDT was more effective causing greater mitochondrial membrane depolarization and cell viability decrease in comparison to PP(Arg)(2)-mediated PDT (in the case of maximal nontoxic photosensitizer doses used).  相似文献   

6.
Photodynamic therapy (PDT) and photothermal therapy (PTT) are emerging modalities for the treatment of tumors and nonmalignant conditions, based on the use of photosensitizers to generate singlet oxygen or heat, respectively, upon light (laser) irradiation. They have potential advantages over conventional treatments, being minimally invasive with precise spatial‐temporal selectivity and reduced side effects. However, most clinically employed PDT agents are activated at visible (vis) wavelengths for which the tissue penetration and, hence, effective treatment depth are compromised. In addition, the lipophilicity of near‐infrared (NIR) photothermal agents limits their use and efficiency. To achieve combined PDT/PTT effects, both excitation wavelengths need to be tuned into the NIR spectral window of biological tissues. This paper reports the synthesis of neodymium‐doped upconversion nanoparticles (NaYF4:Yb,Er,Nd@NaYF4:Nd) that convert 800 nm light into vis wavelengths, which can then activate conventional photosensitizers on the nanoparticle surface for PDT. Covalently bonded IR‐780 dyes can readily be activated by 800 nm laser irradiation. The PEGylated nanoplatform exhibited a narrow size distribution, good stability and efficient generation of singlet oxygen under laser irradiation. The in vitro photocytotoxicity of this engineered nanoplatform as either a PDT or PTT agent in HeLa cells is demonstrated, while fluorescence microscopy in nanoplatform‐incubated cells highlights its potential for bioimaging.  相似文献   

7.
We studied the antitumor effects of photodynamic therapy (PDT) with Zincphyrin, coproporphyrin III with zinc, derived from Streptomyces sp. AC8007, in vitro and in vivo. The photokilling effect of Zincphyrin in the presence of 0.78-100 microg/ml with visible light of 27.2 mW x min/cm2 for 10 min was lower than the hematoporphyrin (Hp) used as a control with L5178Y or sarcoma-180 cells. On the other hand, Zincphyrin apparently reduced tumor growth after intraperitoneal injection at doses of 12.5-50 mg/kg with light irradiation of 75.48 mW x min/cm2 for 10 min in sarcoma-180-bearing mice. Although no mice treated with Zincphyrin died, Hp did cause the death of mice. In B-16 melanoma-bearing mice, both Zincphyrin and Hp had a similar phototherapic effect. Further improvement of the phototherapic effect was observed with the continuous administration of Zincphyrin at 12.5 mg/kg per day for 3 days. The concentration of Zincphyrin in the serum reached a maximum level of 16 microg/ml within 20 min, and the concentration remained at 4.2 microg/ml at 1 hour after the onset of treatment, indicating its rapid action in the body. No animals died after the intraperitoneal administration of Zincphyrin at 100 mg/kg plus exposure to light of 10 mW x min/cm2 for 2 hours, and the body weight of the mice did not decrease. In contrast, all animals receiving 100 mg/kg of Hp under the same conditions died. These results indicate that Zincphyrin would be a useful photosensitizer with low phototoxicity.  相似文献   

8.
A chloroform extract of the leaves of Juniperas taxifolia exhibited a marked antiproliferative effect on human promyelocytic leukemia HL-60 cells at a concentration of 2.5 microg/ml. Deoxypodophyllotoxin (4) was identified in the extract as an outstanding antiproliferative compound, and five diterpenes (1-3, 5, and 6) were isolated as known compounds with weak or no cytotoxicity. These compounds were examined for their respective apoptosis- and differentiation-inducing activities toward HL-60 cells by DNA fragmentation and NBT-reducing assays, respectively. Among them, 7alpha-hydroxysandaracopimaric acid (6) was found to have a potent differentiation-inducing activity in a dose-dependent manner at 0.125-2 microg/ml (0.39-6.29 microM), together with apoptosis-inducing activity at concentrations of more than 2.5 microg/ml (7.86 microM). Deoxypodophyllotoxin (4) that exerted cytotoxic and apoptosis-inducing activities at 2 ng/ml (5 nM) did not induce differentiation at the same concentration, and the other diterpenes (1-3 and 5) showed no effect on cell differentiation, even at 5 microg/ml. It was thus demonstrated for the first time that 7alpha-hydroxysandaracopimaric acid was an effective differentiation-inducing compound toward HL-60 cells.  相似文献   

9.
Photodynamic therapy (PDT) is a promising local treatment modality based on the selective accumulation of a photosensitizer in malignant tissues and the subsequent irradiation with laser light. Photodynamic therapy of malignant tumors includes biological, photochemical and photophysical processes. These processes involve: (a) absorption of photosensitizing agent; (b) selective retention of the photosensitizer in tumors and (c) irradiation of sensitized tumor by laser radiation. This report provides a review of photosensitizers, photochemistry, subcellular targets, side effects and laser involved in photodynamic therapy. In addition, gradual increase in knowledge related to in vitro and in vivo mechanisms of action of PDT, as well as some clinical applications of photodynamic therapy are presented.  相似文献   

10.
Novel benzochloroporphyrin derivatives (BCPDs) were designed, synthesized, and characterized. In vitro dark cytotoxicity and photodynamic efficacy of BCPDs were evaluated by MTT assay on human hepatoma BEL-7402 cells. The experimental results showed that BCPDs 15, 16, 17, and 18 have strong long wavelength absorptions around 670 nm and exhibit significantly lower dark cytotoxicity than BPDMA and possess potent photocytotoxicity, IC50 values 1.32 microg/mL for 15, 0.26 microg/mL for 16, 0.47 microg/mL for 17 of 0.27 microg/mL for 18, and 0.23 microg/mL for BPDMA. Among them, BCPDs 16 and 18 are more effective and promising PDT photosensitizers based on the studies with BEL-7402 cells and show nearly the same photodynamic efficacy as BPDMA. MG-P staining qualitative analysis also indicated that PDT with BCPDs 16 can induce apoptosis in BEL7402 cells.  相似文献   

11.
Photodynamic therapy (PDT) is a medical treatment that involves the irradiation of an administered photosensitizing drug with light of a particular wavelength to activate the photosensitizer to kill abnormal cells. To date, only a small number of photosensitizers have been clinically approved for PDT, and researchers continue to look for new molecules that have more desirable properties for clinical applications. Natural products have long been important sources of pharmaceuticals, and there is a great potential for discovery of novel chemotypes from under‐explored biodiversities in the world. The objective of this study is to mine the terrestrial plants in Sarawak, Borneo Island, for new photosensitizers for PDT. In a screening program from 2004 to 2008, we prepared and studied 2,400 extracts from 888 plants for their photosensitizing activities. This report details the bioprospecting process, preparation and testing of extracts, analysis of the active samples, fractionation of four samples, and isolation and characterization of photosensitizers.  相似文献   

12.
The crude methanol extract of Jatropha curcas leaves exhibited activity against Staphylococcus aureus, Bacillus subtilis, Mycobacterium phlei, Candida albicans, and Trichophyton mentagrophytes but was inactive against Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces cerevisiae. In a bioassay-directed fractionation, two new phorbins were isolated and analysed by spectroscopic methods. Isolate 1 was characterized as an analogue of pheophytin b with a phytyl moiety containing three double bonds which are at positions P2/P3, P6/P7, and P10/P11. Compound 2 was characterized as methyl pheophorbide a with 132-OH and 17- and 17(1)-CH3 moieties. It is active against Serratia marcescens.  相似文献   

13.
Multi-drug resistance of breast cancer is a major obstacle in chemotherapy of cancer treatments. Recently it was suggested that photodynamic therapy (PDT) can overcome drug resistance of tumors. ALA-PDT is based on the administration of 5-aminolevulinic acid (ALA), the natural precursor for the PpIX biosynthesis, which is a potent natural photosensitizer. In the present study we used the AlaAcBu, a multifunctional ALA-prodrug for photodynamic inactivation of drug resistant MCF-7/DOX breast cancer cells. Supplementation of low doses (0.2mM) of AlaAcBu to the cells significantly increased accumulation of PpIX in both MCF-7/WT and MCF-7/DOX cells in comparison to ALA, or ALA + butyric acid (BA). In addition, our results show that MCF-7/DOX cells are capable of producing higher levels of porphyrins than MCF-7/WT cells due to low expression of the enzyme ferrochelatase, which inserts iron into the tetra-pyrrol ring to form the end product heme. Light irradiation of the AlaAcBu treated cells activated efficient photodynamic killing of MCF-7/DOX cells similar to the parent MCF-7/WT cells, depicted by low mitochondrial enzymatic activity, LDH leakage and decreased cell survival following PDT. These results indicate that the pro-drug AlaAcBu is an effective ALA derivative for PDT treatments of multidrug resistant tumors.  相似文献   

14.
In photodynamic therapy (PDT) the photosensitiser 5-aminolaevulinic acid (ALA) can be used by systemic or topical application. Previous experiments showed that the photodynamic effects might not be mediated solely by porphyrins localized in the parenchyma, but also by porphyrins in the microvasculature. Therefore, the microcirculatory effects of PDT following systemic versus topical application of ALA have been investigated. Amelanotic melanomas were implanted in the dorsal skin fold chamber of Syrian Golden hamsters. ALA was injected i.v. for systemic PDT before irradiation, whereas ALA was applied to the chambers for topical PDT before irradiation with an incoherent lamp. FITC-labelled erythrocytes were injected to determine red blood cell velocity (RBCV) and functional vessel density (FVD). Twenty-four hours after PDT tissue was taken for histology and immunohistochemistry to reveal the degree of apoptosis and to show the accumulation of leukocytes. FVD or RBCV was not altered significantly by systemic or topical low-dose PDT (10 J cm(-2)), whereas a significant reduction of RBCV and FVD was detected after high-dose PDT (100 J cm(-2)) following systemic or topical application of ALA. Systemic PDT with 100 J cm(-2) stopped the flow only in the tumor center, whereas topical PDT with 100 J cm(-2) lead to a breakdown of RBCV in all chamber areas. Two hours and 24 h after systemic high-dose PDT, perfused microvessels and capillaries could be detected in normal tissue and tumor periphery, in contrast to topical high-dose PDT leading to a shut down of FVD 24 h after irradiation in all areas of the chamber tissue. Histological staining revealed a more pronounced intracellular oedema and swelling of cells after topical high-dose PDT than systemic high-dose PDT. These results indicate that topical high-dose PDT with ALA has a more pronounced effect on microcirculation as compared to systemic high-dose PDT in this model.  相似文献   

15.
A serum-free culture system of human hepatoma cell lines (HuH-6 and HuH-7) was used to investigate the activity of bovine serum (BS) and of serum-derived factors on the growth and production of -fetoprotein (AFP) and albumin. At higher concentrations, dialyzed BS was inhibitory to the growth of HuH-6 and caused reduction of the level of AFP production by the cells. AFP and albumin levels in HuH-6 and HuH-7 were reduced or unchanged by fetuin, bovine serum albumin (BSA) and transferin (TF), although no cytotoxicity was shown by any of them. Commercial preparations of platelet-derived growth factor exhibited cytotoxicity to HuH-6 and HuH-7 and induced a decrease of AFP and albumin levels in a dose-dependent manner. Transforming growth factor (TGF-) exhibited no cytotoxicity to HuH-6. AFP levels in HuH-6 were unchanged with 1000 pg/ml TGF-, but albumin levels were decreased. TGF-7 at a concentration of 1000 pg/ml was cytotoxic to HuH-7 and AFP levels were a little increased. Albumin levels, however, were unchanged. Following exposure to cycloheximide, AFP and albumin levels in HuH-6 were inhibited.Abbreviations AFP -fetoprotein - BS bovine serum - BSA bovine serum albumin - EDTA ethylenediaminetetraaceticacid - ELISA enzyme-linked immunosorbent assay - HBSS Hank's balanced salt solution - PBS phosphate buffered saline - PDGF platelet-derived growth factor - TF transferrin - TGF-\ transforming growth factor beta  相似文献   

16.
Incubation of degreened Chlamydomonas reinhardtii y-1 cells in the dark with m-phenanthroline induced de novo synthesis of a chlorophyllide b-like pigment. The rate of synthesis of this pigment in the dark was greater than that of total chlorophyll in illuminated cells. Most of the newly synthesized pigment was excreted into the culture medium. The product was extracted from the medium as the metal-free pheophorbide, which had a fluorescence excitation maximum at 428 +/- 1 nm and an emission maximum at 657 +/- 1 nm (E428F657) in ethyl acetate (E427F657 in diethyl ether). Three pheophorbide species were extracted from the medium of green cells treated in the dark, a minor component with a spectrum (E410F670) identical to demetallated chlorophyll a, and two major species with spectral values of E428F657 and E433F657. The latter, predominant form had a spectrum identical to demetallated chlorophyll b, which was purified from the algal cells. E428F657 and E433F657 reacted with hydroxylamine and Girard's T-reagent, which caused a shift in the fluorescence emission maximum to 668 nm. Pheophytin b, which contains an aldehyde group, exhibited an identical spectral shift when treated in the same way, but pheophytin a or porphyrin biosynthetic intermediates did not. Proton NMR analysis of the E428F657 chlorin produced by yellow cells treated with m-phenanthroline confirmed the presence of an aldehydic proton. Chelating and nonchelating phenanthroline analogs equally stimulated synthesis of this product.  相似文献   

17.
Photodynamic therapy (PDT), a new treatment modality for localized cancers involving the selective interaction of visible light with photosensitizers, such as hematoporphyrin derivatives (HpD) or dihematoporphyrin ether/ester (DHE) (Photofrin II). Photodynamic therapy of malignant tumors includes biological, photochemical and photophysical processes. These processes involve: (i) absorption of photosensitizing agent; (ii) selective retention of photosensitizer in tumors and (iii) irradiation of sensitized tumor by laser irradiation. This paper provides a review of photosensitizers, photochemistry, subcellular targets, side effects and lasers involved in photodynamic therapy. In addition, gradual increase in knowledge related to in vivo and in vitro mechanisms of action of PDT, as well as some clinical applications of photodynamic therapy are presented.  相似文献   

18.
Photodynamic therapy (PDT) is a relatively new type of treatment in cancer, based on a photosensitizer, visible light and molecular oxygen. Reactive oxygen species are generated, causing tumor cells death by apoptosis or necrosis. Significant nowadays research efforts are focused on finding new photosensitizers with antineoplastic activity and an acceptable toxicological profile. Although consistent information exists regarding PDT in solid tumors, relatively few data are available for PDT of blood cancers. Therefore, we carried out a comparative study on lymphoblastic K562 cells and human normal peripheral blood mononuclear cells (PBMC) treated at a density of 2 x 10(5) cells/mL with 5,10,15,20-tetra-sulphophenyl-porphyrin (TSPP) and then irradiated with He-Ne laser light (lamda = 632.8 nm). The following cell functions were investigated: viability, multiplication, RNA synthesis, total RNA levels and apoptosis. After irradiation, the viability of TSPP-loaded tumor cells decrease, the multiplication rate and the total RNA level are drastically reduced and cells undergo apoptosis. TSPP alone loaded into cells but not activated by irradiation, does not affect these cell parameters. Human normal PBMC subjected to TSPP loading and laser-irradiation develop a different cellular response, their viability and proliferative capacity not being altered by experimental PDT. Accordingly, it appears that TSPP is a non-aggressive compound for cellular physiology and becomes cytotoxic only by irradiation; moreover laser-activated TSPP affects only cells that have a tumoral pattern.  相似文献   

19.
Photodynamic therapy (PDT) is a noninvasive treatment of some diseases including cancer. We have developed poly(ethylene glycol) (PEG)-attached dendrimers as a drug-carrier candidate. In this study, we prepared nanocapsules of photosensitizers using PEG-attached dendrimers for application to PDT. Two PEG-attached dendrimers derived from poly(amido amine) (PAMAM) and poly(propylene imine) (PPI) dendrimers (PEG-PAMAM and PEG-PPI) were synthesized, and rose bengal (RB) and protoporphyrin IX (PpIX) were used as photosensitizers. Results showed that fewer PpIX molecules were encapsulated by both PEG-attached dendrimers than RB, but the complexes were more stable under physiological conditions. Furthermore, we demonstrated that PEG-PPI held photosensitizers in a more stable manner than PEG-PAMAM because of their inner hydrophobicity. We described the cytotoxicity of the complexes of photosensitizers induced by light irradiation in vitro. The complex of PpIX with PEG-PPI exhibited efficient cytotoxicity, compared with free PpIX. It was suggested that the cytotoxicity was caused by the high level of singlet oxygen production and the efficient delivery to mitochondria. Our results suggest that these PEG-attached dendrimers are a promising vehicle for PDT.  相似文献   

20.
Photodynamic therapy (PDT) is a treatment method using light and photosensitizers (PSs), which is categorized as a non-invasive surgery treatment for cancers. When the tumor is exposed to a specific light, the PSs become active and generate reactive oxygen species (ROS), mainly singlet oxygen which kills nearby cancer cells. PDT is becoming more widely recognized as a valuable treatment option for localized cancers and pre-cancers of skin as it has no long-term effects on the patient. But, due to the limited penetration rate of light into the skin and other organs, PDT can’t be used to treat large cancer cells or cancer cells that have grown deeply into the skin or other organs. Hence, in this study, our focus centers on synthesizing glucose-conjugated phthalocyanine (Pc) compatible with near-infrared (NIR) irradiation as second-generation photosensitizer, so that PDT can be used in a wider range to treat cancers without obstacles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号