首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Although it is well known that aluminum (Al) resistance in wheat (Triticum aestivum) is multigenic, physiological evidence for multiple mechanisms of Al resistance has not yet been documented. The role of root apical phosphate and malate exudation in Al resistance was investigated in two wheat cultivars (Al-resistant Atlas and Al-sensitive Scout) and two near-isogenic lines (Al-resistant ET3 and Al-sensitive ES3). In Atlas Al resistance is multigenic, whereas in ET3 resistance is conditioned by the single Alt1 locus. Based on root- growth experiments, Atlas was found to be 3-fold more resistant in 20 [mu]M Al than ET3. Root-exudation experiments were conducted under sterile conditions; a large malate efflux localized to the root apex was observed only in Atlas and in ET3 and only in the presence of Al (5 and 20 [mu]M). Furthermore, the more Al-resistant Atlas exhibited a constitutive phosphate release localized to the root apex. As predicted from the formation constants for the Al-malate and Al-phosphate complexes, the addition of either ligand to the root bathing solution alleviated Al inhibition of root growth in Al-sensitive Scout. These results provide physiological evidence that Al resistance in Atlas is conditioned by at least two genes. In addition to the alt locus that controls Al-induced malate release from the root apex, other genetic loci appear to control constitutive phosphate release from the apex. We suggest that both exudation processes act in concert to enhance Al exclusion and Al resistance in Atlas.  相似文献   

2.
Three-day-old seedlings of an Al-sensitive (Neepawa) and an Al-resistant (PT741) cultivar of Triticum aestivum were subjected to Al concentrations ranging from 0 to 100 [mu]M for 72 h. At 25 [mu]M Al, growth of roots was inhibited by 57% in the Al-sensitive cultivar, whereas root growth in the Al-resistant cultivar was unaffected. A concentration of 100 [mu]M Al was required to inhibit root growth of the Al-resistant cultivar by 50% and resulted in almost total inhibition of root growth in the sensitive cultivar. Cytoplasmic and microsomal membrane fractions were isolated from root tips (first 5 mm) and the adjacent 2-cm region of roots of both cultivars. When root cytoplasmic proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, no changes in polypeptide patterns were observed in response to Al stress. Analysis of microsomal membrane proteins revealed a band with an apparent molecular mass of 51 kD, which showed significant accumulation in the resistant cultivar following Al exposure. Two-dimensional gel analysis revealed that this band comprises two polypeptides, each of which is induced by exposure to Al. The response of the 51-kD band to a variety of experimental conditions was characterized to determine whether its pattern of accumulation was consistent with a possible role in Al resistance. Accumulation was significantly greater in root tips when compared to the rest of the root. When seedlings were subjected to Al concentrations ranging from 0 to 150 [mu]M, the proteins were evident at 25 [mu]M and were fully accumulated at 100 [mu]M. Time-course studies from 0 to 96 h indicated that full accumulation of the 51-kD band occurred within 24 h of initiation of Al stress. With subsequent removal of stress, the polypeptides gradually disappeared and were no longer visible after 72 h. When protein synthesis was inhibited by cycloheximide, the 51-kD band disappeared even when seedlings were maintained in Al-containing media. Other metals, including Cu, Zn, and Mn, failed to induce this band, and Cd and Ni resulted in its partial accumulation. These results indicate that synthesis of the 51-kD microsomal membrane proteins is specifically induced and maintained during Al stress in the Al-resistant cultivar, PT741.  相似文献   

3.
Fourteen soybean ( Glycine max [L.] Merr.) cultivars were analysed and found to differ considerably in aluminium (Al) resistance. The cultivars Suzunari (Al-resistant) and Shishio (Al-sensitive) were selected for further analysis of physiological mechanisms of Al-resistance. The relative root growth of Shishio was 48% compared to 76% for Suzunari in response to 15 μ M Al (24 h). Aluminium accumulation and Al-induced callose formation in root apices were 50 and 25% of that in Suzunari, respectively. Al inhibited both Suzunari and Shishio during the first 6 h of exposure. However, the root growth inhibition was further increased in Shishio but not in Suzunari, suggesting an Al-induced Al-resistant mechanism operating in Suzunari. Organic acid analysis in root exudates of both cultivars revealed that they specifically exuded citrate in response to Al. However, the citrate exudation rate was significantly higher in Suzunari during the 6 h/24 h Al treatment, which was 52/330 compared to Shishio's 26/118 (nmol [g root fresh weight]−1 [6 h]−1), respectively. This Al-induced citric acid exudation was found to be specific for Al, as several other metals failed to induce citrate exudation in both cultivars. Fourteen days of P deficiency did not elicit citrate excretion in both cultivars, while application of Al to P-deficient plants rapidly induced citrate exudation in both cultivars, confirming the specificity of the response of these soybean cultivars to Al. To our knowledge, this is the first report demonstrating an Al-exclusion mechanism in soybean cultivars, which is conferred by enhanced and specific Al-induced exudation of citrate.  相似文献   

4.
The role of Al interactions with root-cell plasma membrane (PM) Ca2+ channels in Al toxicity and resistance was studied. The experimental approach involved the imposition of a transmembrane electrical potential (via K+ diffusion) in right-side-out PM vesicles derived from roots of two wheat (Triticum aestivum L.) cultivars (Al-sensitive Scout 66 and Al-resistant Atlas 66). We previously used this technique to characterize a voltage-dependent Ca2+ channel in the wheat root PM (J.W. Huang, D.L. Grunes, L.V. Kochian [1994] Proc Natl Acad Sci USA 91: 3473-3477). We found that Al3+ effectively blocked this PM Ca2+ channel; however, Al3+ blocked this Ca2+ channel equally well in both the Al-sensitive and -resistant cultivars. It was found that the differential genotypic sensitivity of this Ca2+ transport system to Al in intact roots versus isolated PM vesicles was due to Al-induced malate exudation localized to the root apex in Al-resistant Atlas but not in Al-sensitive Scout. Because malate can effectively chelate Al3+ in the rhizosphere and exclude it from the root apex, the differential sensitivity of Ca2+ influx to Al in intact roots of Al-resistant versus Al-sensitive wheat cultivars is probably due to the maintenance of lower Al3+ activities in the root apical rhizosphere of the resistant cultivar.  相似文献   

5.
The changes in osmotic potential and the concentration of osmotic solutes in the cell sap of the root tips exposed to Al were examined in two cultivars of wheat ( Triticum aestivum ) differing in Al resistance. Root elongation was less influenced by an 8-h exposure to 20 μ M or 50 μ M Al in Al-resistant cv. Atlas 66 than in Al-sensitive cv. Scout 66. After Al treatment the osmotic potential of the root cells was decreased in Atlas 66 but increased in Scout 66 indicating that the Al treatment osmotically stimulated the driving force for water uptake in Atlas 66 but suppressed it in Scout 66. Al increased the concentration of soluble sugars, the major osmotic solute in the root cells in Atlas 66, but decreased it in Scout 66. Al at both low (5 μ M ) and high (50 μ M ) concentrations, also increased the concentration of soluble sugars in the Al-resistant genotype ET8 but a high Al concentration decreased it in Al-sensitive genotype ES8. Enzymatic analyses and thin-layer chromatography revealed that soluble sugars in the root cells of both Atlas 66 and Scout 66 mainly consisted of monosaccharides such as glucose, fructose and a small amount of sucrose. These results suggest that the accumulation of soluble sugars in Al-resistant wheat Atlas 66 keeps the osmotic potential in the root cells low and thus, enables the root cells to take up water and to elongate against the pressure produced by cell wall rigidification under Al stress.  相似文献   

6.
Accumulation of some proteins isolated from the cell wall of roots of the Al-sensitive (Alfor) and the Al-resistant (Bavaria) barley cultivars were followed during treatment with different Al3+ concentrations, pH changes of the root medium, and several heavy metals (Cu2+, Cd2+, Co2+). SDS-PAGE analysis revealed an Al-induced accumulation of polypeptides with molecular mass of 14, and 16 kDa and a group of polypeptides around 27 kDa. The accumulation pattern of Al-induced polypeptides was very similar in both cultivars but in the Al-resistant Bavaria it was induced at lower Al concentration and earlier than it was in the Al-sensitive cultivar Alfor. Changes in pH values of root medium (pH 3.5–6.5) did not show any effect on the accumulation of Al-induced cell wall polypeptides either in Al-sensitive or in Al-tolerant barley cultivar. Heavy metals (Cu, Cd, and Co) at concentration of 10 μM resulted in similar accumulation of individual polypeptides as we found after Al treatment. In comparison to Al, quantitative differences in polypeptides accumulation induced by Cu, Cd and Co were less expressed that of Al treatment. More pronounced accumulation and earlier induction of individual cell wall polypeptides in roots of Al-resistant barley cultivar than in Al-sensitive, might indicate some possible role of these polypeptides in plant resistance to Al stress.  相似文献   

7.
We previously reported that treatment with aluminum (Al) leads to the accumulation of several polypeptides (12-, 23-, and 43.5-kDa) in root exudates of an Al-resistant cultivar of Triticum aestivum. In this report, we examine the segregation of the 23-kDa, Al-induced polypeptide and the Al-resistant phenotype in single F2 plants arising from a cross between Al-resistant and Al-sensitive doubled-haploid (DH) lines. Single plants and plant populations were screened for sensitivity/resistance to Al using synthesis of 1,3-β-glucans (callose) as a sensitive marker for Al injury. Callose production in the Al-sensitive cv. Katepwa was approximately 3-fold higher than observed in the Al-resistant cv. Maringa, or a near-isogenic line derived from Katepwa and Maringa (Alikat), over a broad range of Al concentrations (0–100 μM). Similar results were observed with DH lines developed from cv. Katepwa, which produced two–four times more callose than DH lines developed from cv. Alikat. When single plants from F1 and F2 populations derived from a cross between DH Katepwa and DH Alikat were scored for Al-induced callose production after 4 days exposure to 100 μM Al, all F1 plants were Al-resistant and F2 plants segregated approximately 3:1 for Al-resistance/sensitivity. A backcross population derived from crossing Al-resistant F1 with Al-sensitive Katepwa, segregated 1:1 for Al-resistance/sensitivity. Thus, the Al-resistant phenotype is inherited in a monogenic, dominant fashion in our DH lines. Enhanced accumulation of the Al-induced, 23-kDa polypeptide in root exudates was a trait which co-segregated with the Al-resistant phenotype in F2 populations. This polypeptide was strongly labeled with S-methionine after 3 days of Al exposure and 6 h labeling. When root exudate polypeptides were separated by immobilized metal ion affinity chromatography, the 23-kDa polypeptide demonstrated significant Al-binding capacity. This polypeptide has been purified to near-homogeneity, providing an opportunity to isolate the gene(s) encoding this polypeptide.  相似文献   

8.
Studies of Al partitioning and accumulation and of the effect of Al on the growth of intact wheat (Triticum aestivum L.) roots of cultivars that show differential Al sensitivity were conducted. The effects of various Al concentrations on root growth and Al accumulation in the tissue were followed for 24 h. At low external Al concentrations, Al accumulation in the root tips was low and root growth was either unaffected or stimulated. Calculations based on regression analysis of growth and Al accumulation in the root tips predicted that 50% root growth inhibition in the Al-tolerant cv Atlas 66 would be attained when the Al concentrations were 105 [mu]M in the nutrient solution and 376.7 [mu]g Al g-1 dry weight in the tissue. In contrast, in the Al-sensitive cv Tam 105, 50% root growth inhibition would be attained when the Al concentrations were 11 [mu]M in the nutrient solution and 546.2 [mu]g Al g-1 dry weight in the tissue. The data support the hypotheses that differential Al sensitivity correlates with differential Al accumulation in the growing root tissue, and that mechanisms of Al tolerance may be based on strategies to exclude Al from the root meristems.  相似文献   

9.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

10.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

11.
Aluminum resistance of cowpea as affected by phosphorus-deficiency stress   总被引:2,自引:0,他引:2  
Plants growing in acid soils suffer both phosphorus (P) deficiency and aluminum (Al) toxicity stresses. Selection of genotypes for adaptation to either P deficiency or Al toxicity has sometimes been unsuccessful because these two soil factors often interact. Two experiments were conducted to evaluate eight cowpea genotypes for Al resistance and to study the combined effect of P deficiency and Al toxicity stress on growth, P uptake, and organic acid anion exudation of two genotypes of contrasting Al resistance selected from the first experiment. Relative root inhibition by 30 μM Al ranged from 14% to 60% and differed significantly among the genotypes. Al significantly induced callose formation, particularly in Al-sensitive genotypes. P accumulation was significantly reduced (28% and 95%) by Al application for both the Al-resistant and the Al-sensitive genotypes. Al supply significantly enhanced malate release of root apices of both genotypes. However, the exudation rate was significantly higher in the Al-resistant genotype. P deprivation induced an enhanced malate exudation in the presence of Al only in the Al-resistant genotype IT89KD-391. Citrate exudation rate of the root apices was lower than malate exudation by a factor of about 10, and was primarily enhanced by P deficiency in both genotypes. Al treatment further enhanced citrate exudation in P-sufficient, but not in P-deficient plants. The level of citrate exudation was consistently higher in the Al-resistant genotype IT89KD-391 particularly in presence of Al.It is concluded that the Al-resistant genotype is better adapted to acid Al-toxic and P-deficient soils than the Al-sensitive genotype since both malate and citrate exudation were more enhanced by combined Al and P-deficiency stresses.  相似文献   

12.
The influence of Al exposure on long-distance Ca2+ translocation from specific root zones (root apex or mature root) to the shoot was studied in intact seedlings of winter wheat (Triticum aestivum L.) cultivars (Al-tolerant Atlas 66 and Al-sensitive Scout 66). Seedlings were grown in 100 [mu]M CaCl2 solution (pH 4.5) for 3 d. Subsequently, a divided chamber technique using 45Ca2+-labeled solutions (100 [mu]M CaCl2 with or without 5 or 20 [mu]M AlCl3, pH 4.5) was used to study Ca2+ translocation from either the terminal 5 to 10 mm of the root or a 10-mm region of intact root approximately 50 mm behind the root apex. The Al concentrations used, which were toxic to Scout 66, caused a significant inhibition of Ca2+ translocation from the apical region of Scout 66 roots. The same Al exposures had a much smaller effect on root apical Ca2+ translocation in Atlas 66. When a 10-mm region of the mature root was exposed to 45Ca2+, smaller genotypic differences in the Al effects effects on Ca2+ translocation were observed, because the degree of Al-induced inhibition of Ca2+ translocation was less than that at the root apex. Exposure of the root apex to Al inhibited root elongation by 70 to 99% in Scout 66 but had a lesser effect (less than 40% inhibition) in Atlas 66. When a mature root region was exposed to Al, root elongation was not significantly affected in either cultivar. These results demonstrate that genotypic differences in Al-induced inhibition of Ca2+ translocation and root growth are localized primarily in the root apex. The pattern of Ca2+ translocation within the intact root was mainly basipetal, with most of the absorbed Ca2+ translocated toward the shoot. A small amount of acropetal Ca2+ translocation from the mature root regions to the apex was also observed, which accounted for less than 5% of the total Ca2+ translocation within the entire root. Because Ca2+ translocation toward the root apex is limited, most of the Ca2+ needed for normal cellular function in the apex must be absorbed from the external solution. Thus, continuous Al disruption of Ca2+ absorption into cells of the root apex could alter Ca2+ nutrition and homeostasis in these cells and could play a pivotal role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars.  相似文献   

13.
Incorporation of 35S into protein is reduced by exposure to Al in wheat (Triticum aestivum), but the effects are genotype-specific. Exposure to 10 to 75 [mu]M Al had little effect on 35S incorporation into total protein, nuclear and mitochondrial protein, microsomal protein, and cytosolic protein in the Al-resistant cultivar PT741. In contrast, 10 [mu]M Al reduced incorporation by 21 to 38% in the Al-sensitive cultivar Katepwa, with effects becoming more pronounced (31-62%) as concentrations of Al increased. We previously reported that a pair of 51-kD membrane-bound proteins accumulated in root tips of PT741 under conditions of Al stress. We now report that the 51-kD band is labeled with 35S after 24 h of exposure to 75 [mu]M Al. The specific induction of the 51-kD band in PT741 suggested a potential role of one or both of these proteins in mediating resistance to Al. Therefore, we analyzed their expression in single plants from an F2 population arising from a cross between the PT741 and Katepwa cultivars. Accumulation of 1,3-[beta]-glucans (callose) in root tips after 24 h of exposure to 100 [mu]M Al indicated that this population segregated for Al resistance in about a 3:1 ratio. A close correlation between resistance to Al (low callose content of root tips) and accumulation of the 51-kD band was observed, indicating that at least one of these proteins cosegregates with the Al-resistance phenotype. As a first step in identifying a possible function, we have demonstrated that the 51-kD band is most clearly associated with the tonoplast. Whereas Al has been reported to stimulate the activity of the tonoplast H+-ATPase and H+-PPase, antibodies raised against these proteins did not cross-react with the 51-kD band. Efforts are now under way to purify this protein from tonoplast-enriched fractions.  相似文献   

14.
Accumulation of two peripheral membrane polypeptides (20 and 28 kDa) in roots of Al-sensitive (cv. Alfor) and Al-resistant (cv. Bavaria) barley cultivars were analysed during Al stress. Both cultivars were subjected to Al concentration ranging from 0 to 150 µM for 24, 48, 72 and 96 h. Accumulation of both polypeptides was determined 24 h after exposure of plants to Al and content of both polypeptides showed only small depedence upon Al concentration and duration of Al treatment. Although, based on root growth test, Bavaria showed significantly greater resistance to Al than Alfor, analysis of 20 and 28 kDa polypeptide pattern has not revealed significant difference between the two cultivars. However, accumulation of 20 and 28 kDa polypeptides in Alfor was selectively induced by Al treatment because different pH of the root media (pH 3.5 to 6.5) or application of other metals (Cu, Co, or Cd) failed to induce these two bands. On the other hand, accumulation of these polypeptides in Bavaria was induced not only by Al, but also by Cd and in a lesser extent by Co treatment.  相似文献   

15.
The effects of aluminum (Al) on root elongation, the mechanical extensibility of the cell wall, and the amount of cell-wall polysaccharides in the roots of Al-resistant (Atlas 66) and Al-sensitive (Scout 66) cultivars of wheat ( Triticum aestivum L.) were examined. Exposure to 10 μ M AlCl3 for 6 h inhibited root elongation in Scout 66 but not in Atlas 66. It also decreased the mechanical extensibility of the cell wall in the roots of both cultivars, but prominently only in the roots of Scout 66. The amount of hemicellulose in the 10-mm region of root apex of Scout 66 was increased by the exposure to Al, especially in the apical regions. Al did not influence the neutral sugar composition of either pectin or hemicellulose in Scout 66 roots. However, Al increased the weight-average molecular mass of hemicellulosic polysaccharides and the amounts of wall-bound ferulic and diferulic acids in Scout 66 roots. These findings suggest that Al modifies the metabolism of cell-wall components and thus makes the cell wall thick and rigid, thereby inhibiting the growth of wheat roots.  相似文献   

16.
The present study was conducted to investigate the cell wall properties in two wheat (Triticum aestivum L.) cultivars differing in their sensitivity to Al stress. Seedlings of Al-resistant, Inia66 and Al-sensitive, Kalyansona cultivars were grown in complete nutrient solutions for 4 days and then subjected to treatment solutions containing Al (0, 50 microM) in a 0.5 mM CaCl(2) solution at pH 4.5 for 24 h. Root elongation was inhibited greatly by the Al treatment in the Al-sensitive cultivar compared to the Al-resistant cultivar. The Al-resistant cultivar accumulated less amount of Al in the root apex than in the Al-sensitive cultivar. The contents of pectin and hemicellulose in roots were increased with Al stress, and this increase was more conspicuous in the Al-sensitive cultivar. The molecular mass of hemicellulosic polysaccharides was increased by the Al treatment in the Al-sensitive cultivar. The increase in the content of hemicellulose was attributed to increase in the contents of glucose, arabinose and xylose in neutral sugars. Aluminum treatment increased the contents of ferulic acid and p-coumaric acid especially in the Al-sensitive cultivar by increasing the activity of phenylalanine ammonia lyase (PAL, EC 4.3.1.5). Aluminum treatment markedly decreased the beta-glucanase activity in the Al-sensitive cultivar, but did not exert any effect in the Al-resistant cultivar. These results suggest that the modulation of the activity of beta-glucanase with Al stress may be involved in part in the alteration of the molecular mass of hemicellulosic polysaccharides in the Al-sensitive cultivar. The increase in the molecular mass of hemicellulosic polysaccharides and ferulic acid synthesis in the Al-sensitive cultivar with Al stress may induce the mechanical rigidity of the cell wall and inhibit the elongation of wheat roots.  相似文献   

17.
Basu  U.  McDonald-Stephens  J. L.  Archambault  D. J.  Good  A. G.  Briggs  K. G.  Taing-Aung  Taylor  G. J. 《Plant and Soil》1997,196(2):283-288
We have made use of a genetic approach to develop homozygous, near-isogenic germplasm for investigating aluminium (Al) resistance in Triticum aestivum L. A conventional backcross program was used to transfer Al resistance from the Al-resistant cultivar, Maringa, to a locally-adapted, Al-sensitive cultivar, Katepwa. At the third backcross stage, a single, resistant isoline (Alikat = Katepwa*3/Maringa) was chosen on the basis of superior root growth after 14 days of exposure to a broad range of Al concentrations (0 to 600 µM). Genetic analysis of doubled-haploid lines (DH) developed from this isoline suggested that resistance is controlled by a single dominant gene. Crosses between DH Alikat and DH Katepwa yielded an Al-resistant F1 population. Backcrossing this F1 population to DH Katepwa produced a population which segregated 1:1 for Al resistance, while selfing produced a population segregating 3 : 1 for Al resistance. Under conditions of Al stress, Al-resistant F2 plants released a suite of novel low molecular weight polypeptides into the rhizosphere. One of these polypeptides (23 kD) shows substantive Al-binding capacity and segregates with the resistant phenotype. While the precise mechanisms that mediate Al resistance are still unknown, this research has provided support for a possible role of the 23 kD exudate polypeptide in mediating resistance to Al. To more fully understand the role that this polypeptide plays in Al-resistance, we are attempting to clone this gene from microsequence data obtained from purified protein.  相似文献   

18.

Background and Aims

Aluminium (Al) toxicity is one of the factors limiting crop production on acid soils. However, genotypic differences exist among plant species or cultivars in response to Al toxicity. This study aims to investigate genotypic differences among eight cultivars of tatary buckwheat (Fagopyrum tataricum) for Al resistance and explore the possible mechanisms of Al resistance.

Methods

Al resistance was evaluated based on relative root elongation (root elongation with Al/root elongation without Al). Root apex Al content, pectin content and exudation of root organic acids were determined and compared.

Key Results

Genotypic differences among the eight cultivars were correlated with exclusion of Al from the root apex. However, there was a lack of correlation between Al exclusion and Al-induced oxalate secretion. Interestingly, cell-wall pectin content of the root apex was generally lower in Al-resistant cultivars than in Al-sensitive cultivars. Although we were unable to establish a significant correlation between Al exclusion and pectin content among the eight cultivars, a strong correlation could be established among six cultivars, in which the pectin content in the most Al-resistant cultivar ‘Chuan’ was significantly lower than that in the most Al-sensitive cultivar ‘Liuku2’. Furthermore, root apex cell-wall pectin methylesterase activity (PME) was similar in ‘Chuan’ and ‘Liuku2’ in the absence of Al, but Al treatment resulted in increased PME activity in ‘Liuku2’ compared with ‘Chuan’. Immunolocalization of pectins also showed that the two cultivars had similar amounts of either low-methyl-ester pectins or high-methyl-ester pectins in the absence of Al, but Al treatment resulted in a more significant increase of low-methyl-ester pectins and decrease of high-methyl-ester pectins in ‘Liuku2’.

Conclusions

Cell-wall pectin content may contribute, at least in part, to differential Al resistance among tatary buckwheat cultivars.  相似文献   

19.
Phytotoxicity of aluminum is characterized by a rapid inhibition of root elongation at micromolar concentrations, however, the mechanisms primarily responsible for this response are not well understood. We investigated the effect of Al on the viscosity and elasticity parameters of root cell wall by a creep-extension analysis in two cultivars of wheat (Triticum aestivum L.) differing in Al resistance. The root elongation and both viscous and elastic extensibility of cell wall of the root apices were hardly affected by the exposure to 10 microM Al in an Al-resistant cultivar, Atlas 66. However, similar exposure rapidly inhibited root elongation in an Al-sensitive cultivar, Scout 66 and this was associated with a time-dependent accumulation of Al in the root tissues with more than 77% residing in the cell wall. Al caused a significant decrease in both the viscous and elastic extensibility of cell wall of the root apices of Scout 66. The "break load" of the root apex of Scout 66 was also decreased by Al. However, neither the viscosity nor elasticity of the cell wall was affected by in vitro Al treatment. Furthermore, pre-treatment of seedlings with Al in conditions where root elongation was slow (i.e. low temperature) did not affect the subsequent elongation of roots in a 0 Al treatment at room temperature. These results suggest that the Al-dependent changes in the cell wall viscosity and elasticity are involved in the inhibition of root growth. Furthermore, for Al to reduce cell wall extensibility it must interact with the cell walls of actively elongating cells.  相似文献   

20.
Two triticale cultivars ZC 237 (Al-resistant) and ZC 1890 (Al-sensitive) were used to investigate the effects of 30 to 100 μM Al on antioxidative enzyme activity, lipid peroxidation and cell wall composition. In ZC 1890, the root elongation was significantly inhibited after 1-h exposure to 50 μM Al, the changes in hemicellulose fraction were clearly detected after 2-h Al exposure, while the peroxidase (POD) and superoxide dismutase (SOD) activities significantly increased after 6-h exposure, and the malondialdehyde (MDA) content after 12-h exposure. The similar patterns were also found in ZC 237. Treatment of ZC 1890 with 1 mM citrate for 30 min after 3-h exposure to Al resulted in significant decrease of Al bound to cell-wall and recovery of root elongation. These results suggested that Al affected cell wall before the damage of plasma membrane, but this was not the primary cause of root elongation inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号