首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
scid cells efficiently integrate hairpin and linear DNA substrates.   总被引:3,自引:2,他引:1       下载免费PDF全文
The scid mouse mutation affects V(D)J rearrangement and double-strand break repair. scid V(D)J rearrangement is characterized by defective coding joint formation which prevents the development of mature B and T cells. Hairpin DNA has been implicated in the formation of V(D)J coding joints. We found scid cells to be proficient in hairpin processing in the context of DNA integration. In addition, we found that the scid defect did not impair integration of linear DNA via nonhomologous recombination. Therefore, hairpin processing and integration of DNA into the genome are distinct from hypersensitivity to ionizing radiation and the defect in V(D)J recombination.  相似文献   

2.
Scid mice are defective in the ability to repair DNA double strand breaks and, as a consequence, their cells are radiosensitive. Further, they have been shown to be prone to develop thymic lymphomas (TLs) after small doses of ionizing radiation. Little is known, however, on the role of scid mutation in chemical carcinogenesis. To determine if scid mutation increased predisposition to chemical carcinogenesis, we examined both the susceptibility of scid mice to N-ethyl-N-nitrosourea (ENU)-induced lymphomagenesis and the involvement of ras gene activation. Adult female mice at 8 weeks of age were given ENU in their drinking water at 400 ppm for 2-10 weeks. Contrary to expectations, we observed a two to three-fold reduction in TL development in the scid mice. The highest incidence was achieved by ENU treatment for 8 weeks for scid and wild-type C.B-17 mice, of 42 and 85%, respectively (P<0.05). We investigated whether this was attributable to the usage of the ras mutation pathway. There was, however, no significant difference in the frequency and spectrum of K-ras mutation between the scid and wild-type C.B-17 mice. Most of the K-ras mutations were either GGT to GAT transition in codon 12 (11/23: 48%) or CAA to CCA transversion in codon 61 (8/23: 35%) that was independent of scid background. The incidence of N-ras mutation was very low. These results indicate that scid mice are less susceptible to ENU-induced lymphomagenesis and ras gene mutation frequently occurs in both scid and wild-type C.B-17 mice.  相似文献   

3.
Murine severe combined immune deficiency (scid) is marked by a 5,000-fold reduction in coding joint formation in V(D)J recombination of antigen receptors. Others have demonstrated a sensitivity to double-strand breaks generated by ionizing radiation and bleomycin. We were interested in establishing the extent of the defect in intramolecular and intermolecular DNA end joining in lymphoid and nonlymphoid cells from scid mice. We conducted a series of studies probing the ability of these cells to resolve free ends of linear DNA molecules having various biochemical end configurations. We find that the stable integration of linear DNA into scid fibroblasts is reduced 11- to 75-fold compared with that in normal fibroblasts. In contrast, intramolecular and intermolecular end joining occur at normal frequencies in scid lymphocytes and fibroblasts. This normal level of end joining is observed regardless of the type of overhang and regardless of the requirement for nucleolytic activities prior to ligation. The fact that free ends having a wide variety of end configurations are recircularized normally in scid cells rules out certain models for the defect in scid. We discuss the types of DNA end joining reactions that are and are not affected in this double-strand break repair defect in the context of a hairpin model for V(D)J recombination.  相似文献   

4.
Cell mutants of the Ku nuclear DNA-binding complex are ionizing radiation sensitive and show V(D)J recombination defects. Ku binds and activates a catalytic subunit of DNA-dependent protein kinase (DNA-PK), although the substrates for DNA-PK are unknown. We found that scid cell extracts were deficient in Ku phosphorylation by DNA-PK. Human chromosome 8-complemented scid cells, containing the human DNA-PK catalytic subunit, restored Ku phosphorylation. Likewise, radiation-induced RPA hyperphosphorylation was not completed in scid cells compared with control or chromosome 8-reconstituted cells. Thus, the inactivity of DNA-PK is likely responsible for the repair and recombination defects in scid cells.  相似文献   

5.
Murine severe combined immunodeficiency (scid) cells are characterized by defective Prkdc (DNA-PKcs), one of the key genes involved in the repair of DNA double-strand breaks. Interestingly, scid mice are not null mutants and their cells are likely to show low DNA-PKcs activity. Prkdc is also involved in telomere maintenance and in contrast to mice genetically engineered to lack Prkdc (i.e. null mutants), which show complete absence of DNA-PKcs activity, loss of telomere capping function and normal telomere length, cells from scid mice show not only loss of telomere capping function but also abnormally elongated telomeres. Here we demonstrate that telomere elongation observed in murine scid cells can be reversed by expressing mutant hRAD54, a protein involved in homologous recombination. In addition, we measured recombination rates at telomeres using chromosome orientation fluorescence in situ hybridization (CO-FISH) and found that these are elevated in scid cells in comparison with control cells, or significantly reduced in scid cells expressing mutant hRAD54. Similarly, recombination rates at telomeres are reduced in scid cells following introduction of functional Prkdc. Since expression of mutant hRAD54 and restoration of functional Prkdc in scid cells cause the same effects, i.e. telomere shortening and reduced recombination rates at telomeres, these results argue that telomere elongation in scid cells is a complex trait resulting from interactions between homologous recombination mechanisms and DNA-PKcs.  相似文献   

6.
The goal of this study was to determine the effect of the mouse severe combined immunodeficiency (scid) mutation on the rate of meiotic recombination, by standard backcross linkage analysis. For this purpose, we examined four crosses that involved F1 hybrid animals heterozygous for the strain C57BL/6 and BALB/c genomes. In one set of reciprocal crosses, F1 animals were homozygous scid/scid, and in a second set of reciprocal crosses, F1 mice were homozygous wild-type (+/+) at the scid locus. Backcross progeny were typed for recombination between selected genetic markers on mouse Chromosomes (Chrs) 1, 4, 6, 7, 9, 15, and 17. Although some differences in recombination were observed over some intervals, the expression of the SCID phenotype did not appear to have a major or consistent effect on meiotic recombination. Received: 4 October 1995 / Accepted: 2 April 1996  相似文献   

7.
The gene product mutated in ataxia telangiectasia, ATM, is a ubiquitously expressed 370 kDa protein kinase that is a key mediator of the cellular response to DNA damage [1]. ATM-deficient cells are radiosensitive and show impaired cell cycle arrest and increased chromosome breaks in response to ionizing radiation. ATM is a member of the phosphatidylinositol-3-kinase (PI3K)-related protein kinase superfamily, which includes the catalytic subunit of DNA-dependent protein kinase (DNA-PK(cs)) and ATR [2]. DNA-PK is a 470 kDa protein kinase that is required for proper end-to-end rejoining of DNA double-strand breaks [3]. Prkdc(scid/scid) mice have a homozygous mutation in the gene encoding DNA-PK(cs) and, like Atm(-/-) mice, are viable and radiosensitive [4-8]. To determine if Atm and DNA-PK(cs) show genetic interaction, we attempted to generate mice deficient in both gene products. However, no scid/scid Atm(-/-) pups were recovered from scid/scid Atm(+/-) intercrosses. Developmental arrest of scid/scid Atm(-/-) embryos occurred around E7.5, a developmental stage when embryonic cells are hypersensitive to DNA damage [9]. This reveals synthetic lethality between mutations in Atm and DNA-PK and suggests that Atm and DNA-PK have complementary functions that are essential for development.  相似文献   

8.
Thymocytes in mutant mice with severe combined immunodeficiency (scid thymocytes) show ongoing recombination of some T-cell receptor delta gene elements, generating signal joints quantitatively and qualitatively indistinguishable from those in wild-type fetal thymocytes. Excised D delta 2-J delta 1 and D delta 1-D delta 2 rearrangements are detectable at levels equivalent to or greater than those in thymocytes from wild-type mice on fetal day 15. Signal junctional modification, shown here to occur frequently in wild-type adult but not newborn excised D delta 2-J delta 1 junctions, can occur normally in adult scid thymocytes. Excised D delta 1-D delta 2 scid junctions, similar to wild-type thymocytes, include pseudonormal coding junctions as well as signal junctions. Inversional D delta 1-D delta 2 rearrangements, generating conventional hybrid junctions, are also reproducibly detectable in scid thymus DNA. These hybrids, unlike those reported for artificial recombination constructs, do not show extensive nucleotide loss. In contrast to the normal or high incidences of D delta 1-, D delta 2-, and J delta 1-associated signal junctions in scid thymocytes, V delta 1, V gamma 3, and V gamma 1.2 signal products are undetectable in scid thymocytes or are detectable at levels at least 10-fold lower than the levels in wild-type fetal thymocytes. These findings confirm biased T-cell receptor element recombination by V(D)J recombinase activity of nontransformed scid thymocytes and indicate that analysis of in vivo-mediated gene rearrangements is important for full understanding of how the scid mutation arrests lymphocyte development.  相似文献   

9.
10.
Genetic approaches have provided evidence that DNA end-joining problems serve an essential role in neuronal survival during development of mammalian embryos. In the present study, we tested whether the DNA repair enzyme, DNA dependent protein kinase, plays an important role in the survival of cerebral cortical neurons in mice. DNA-PK is comprised of a DNA-binding subunit called Ku and a catalytic subunit called DNA-PKcs. In mice with the scid mutation, DNA-PKcs is truncated near the kinase domain, which causes loss of kinase activity. We compared the spatial and temporal aspects of neuronal cell death in scid versus isogenic wild-type embryos and found a significant increase in dying cells in scid mice, as assessed by nuclear changes, DNA fragmentation and caspase-3 activity. Additional biochemical and immunocytochemical studies indicated that of several DNA repair enzymes investigated, only PARP was increased in scid mice, possibly in response to elevated DNA strand breaks.  相似文献   

11.
Mice homozygous for an autosomal recessive mutation for the scid gene exhibit a defect that specifically impairs lymphoid differentiation but not myelopoiesis. Such mice can be cured of their lymphoid deficiency by grafts with normal bone marrow, although full reconstitution of lymphoid function is seldom obtained. Long-term bone marrow cultures (LTBMC) are devoid of all mature B and pre-B cells but contain lymphoid stem cells. We therefore reconstituted scid mice with LTBMC cells to study the kinetics of B lymphocyte reconstitution in normal and irradiated (4 Gy) scid recipients and in irradiated (9.5 Gy) co-isogenic C.B-17 mice. Detectable colony-forming B cells rapidly increased in the spleen and bone marrow of irradiated C.B-17 and irradiated scid recipients, reaching normal levels between 4 and 6 wk post-grafting. Unirradiated scid recipients showed limited reconstitution in spleen and very poor reconstitution in bone marrow. Unirradiated scid recipients also had relatively few surface Ig+ cells in spleen or bone marrow, whereas both groups of irradiated recipients had normal numbers between 4 and 6 wk post-reconstitution. Normal levels of cytotoxic T cell activity by 8 wk after reconstitution were observed only in the irradiated C.B-17 and irradiated scid recipients. Analysis of mice reconstituted with cells from LTBMC indicates that these cultures contain lymphoid stem cells with significant proliferative and self-renewal potential, and that full reconstitution of lymphoid function requires prior irradiation of the scid recipient.  相似文献   

12.
Elongated telomeres in scid mice   总被引:9,自引:0,他引:9  
Severe combined immunodeficiency (scid) mice are deficient in the enzyme DNA-PK (DNA-dependent protein kinase) as a result of the mutation in the gene encoding the catalytic subunit (DNA-PKcs) of this enzyme. DNA-PKcs is a member of the phosphatidylinositol 3-kinase superfamily, which includes the human protein ATM (ataxia telangiectasia mutated) and the yeast protein Tel1. Using Q-FISH (quantitative fluorescence in situ hybridization), we show here that scid mice from four different genetic backgrounds have, on average, 1.5-2 times longer telomeres than those of corresponding wild-type mice. Our results point to the possibility that DNA-PKcs may, directly or indirectly, be involved in telomere length regulation in mammalian cells.  相似文献   

13.
V(D)J recombination is the mechanism by which antigen receptor genes are assembled. The site-specific cleavage mediated by RAG1 and RAG2 proteins generates two types of double-strand DNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although these DNA breaks are mainly resolved into coding joints and signal joints, they can participate in a nonstandard joining process, forming hybrid and open/shut joints that link coding ends to signal ends. In addition, the broken DNA molecules excised from different receptor gene loci could potentially be joined to generate interlocus joints. The interlocus recombination process may contribute to the translocation between antigen receptor genes and oncogenes, leading to malignant transformation of lymphocytes. To investigate the underlying mechanisms of these nonstandard recombination events, we took advantage of recombination-inducible cell lines derived from scid homozygous (s/s) and scid heterozygous (s/+) mice by transforming B-cell precursors with a temperature-sensitive Abelson murine leukemia virus mutant (ts-Ab-MLV). We can manipulate the level of recombination cleavage and end resolution by altering the cell culture temperature. By analyzing various recombination products in scid and s/+ ts-Ab-MLV transformants, we report in this study that scid cells make higher levels of interlocus and hybrid joints than their normal counterparts. These joints arise concurrently with the formation of intralocus joints, as well as with the appearance of opened coding ends. The junctions of these joining products exhibit excessive nucleotide deletions, a characteristic of scid coding joints. These data suggest that an inability of scid cells to promptly resolve their recombination ends exposes the ends to a random joining process, which can conceivably lead to chromosomal translocations.  相似文献   

14.
Mice homozygous for the scid (severe combined immune deficiency) mutation are defective in the repair of DNA double-strand breaks (DSBs) and are consequently very X-ray sensitive and defective in the lymphoid V(D)J recombination process. Recently, a strong candidate for the scid gene has been identified as the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) complex. Here, we show that the activity of the DNA-PK complex is regulated in a cell cycle-dependent manner, with peaks of activity found at the G1/early S phase and again at the G2 phase in wild-type cells. Interestingly, only the deficit of the G1/early S phase DNA-PK activity correlated with an increased hypersensitivity to X-irradiation and a DNA DSB repair deficit in synchronized scid pre-B cells. Finally, we demonstrate that the DNA-PK activity found at the G2 phase may be required for exit from a DNA damage-induced G2 checkpoint arrest. These observations suggest the presence of two pathways (DNA-PK-dependent and -independent) of illegitimate mammalian DNA DSB repair and two distinct roles (DNA DSB repair and G2 checkpoint traversal) for DNA-PK in the cellular response to ionizing radiation.  相似文献   

15.
Lymphoid cells from scid mice initiate V(D)J recombination normally but have a severely reduced ability to join coding segments. Thymocytes from scid mice contain broken DNA molecules at the TCR delta locus that have coding ends, as well as molecules with signal ends, whereas in normal mice we previously detected only signal ends. Remarkably, these coding (but not signal) ends are sealed into hairpin structures. The formation of hairpins at coding ends may be a universal, early step in V(D)J recombination; this would provide a simple explanation for the origin of P nucleotides in coding joints. These findings may shed light on the mechanism of cleavage and suggest a possible role for the scid factor.  相似文献   

16.
Ionizing radiation and interstrand DNA crosslinking compounds provide important treatments against cancer due to their extreme genotoxicity for proliferating cells. Both the efficacies of such treatments and the mutagenic potential of these agents are modulated by the ability of cells to repair the inflicted DNA damage. Here we demonstrate that homologous recombination-deficient mRAD54(-/-) mice are hypersensitive to ionizing radiation at the embryonic but, unexpectedly, not at the adult stage. However, at the adult stage mRAD54 deficiency dramatically aggravates the ionizing radiation sensitivity of severe combined immune deficiency (scid) mice that are impaired in DNA double-strand break repair through DNA end-joining. In contrast, regardless of developmental stage, mRAD54(-/-) mice are hypersensitive to the interstrand DNA crosslinking compound mitomycin C. These results demonstrate that the two major DNA double-strand break repair pathways in mammals have overlapping as well as specialized roles, and that the relative contribution of these pathways towards repair of ionizing radiation-induced DNA damage changes during development of the animal.  相似文献   

17.
Herpetic stromal keratitis in the reconstituted scid mouse model.   总被引:4,自引:2,他引:2       下载免费PDF全文
Infections of the cornea with herpes simplex virus type 1 cause inflammatory lesions which frequently lead to blindness. The disease is suspected to be immunopathological in nature. To establish this point and to study possible mechanisms involved, corneal infections in C.B-17 scid/scid and cell-reconstituted scid mice were investigated. Whereas unreconstituted scid mice failed to develop herpetic stromal keratitis (HSK) and died of encephalitis, mice reconstituted with T lymphocytes generated severe lesions. T cells of the CD4+ subset were found to be essential mediators of the HSK lesion, while T cells of the CD8+ subset protected mice from lethality. The results confirm that HSK is an immunopathological disease and that scid mice provide a convenient model that should prove valuable in establishing the biochemical mechanisms by which HSK is mediated.  相似文献   

18.
V(D)J recombination cleavage generates two types of dsDNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although signal ends can be directly ligated to form signal joints, hairpin coding ends need to be opened and subsequently processed before being joined. However, the underlying mechanism of coding end resolution remains undefined. The current study attempts to delineate this process by analyzing various structures of coding ends made in situ from recombination-inducible pre-B cell lines of both normal and scid mice. These cell lines were derived by transformation of B cell precursors with the temperature-sensitive Abelson murine leukemia virus. Our kinetic analysis revealed that under conditions permissive to scid transformants, hairpin coding ends could be nicked to generate 3' overhangs and then processed into blunt ends. The final joining of these blunt ends followed the same kinetics as signal joint formation. The course of this process is in sharp contrast to coding end resolution in scid heterozygous transformants that express the catalytic subunit of DNA-dependent protein kinase, in which hairpin end opening, processing, and joining proceeded very rapidly and appeared to be closely linked. Furthermore, we demonstrated that the opening of hairpin ends in scid cells could be manipulated by different culture conditions, which ultimately influenced not only the level and integrity of the newly formed coding joints, but also the extent of microhomology at the coding junctions. These results are discussed in the context of scid leaky recombination.  相似文献   

19.
The hypothesis that enhancement of pregnancy success results from immune recognition of the conceptus was evaluated by studying reproductive performance in a new line of mice deficient in NK cells and lacking B cells and T cells. Doubly mutant mice of genotype scid/scid.bg/bg are both viable and fertile. The numbers of offspring born to pairs of this genotype were not different from numbers born to heterozygous pairs. Differences in prenatal loss could not be found between genotypes by counts of either fetal resorption sites or corpora lutea. The timing of developmental stages and the differentiation of trophoblast, placenta, decidua and metrial gland in scid/scid.bg/bg mice appeared normal. These results suggest either that lymphokine influences on trophoblast cells in vivo do not contribute, in a major way, to pregnancy success or that the important cytokines are derived from uterine cell populations that are not classical, mature B cells, T cells or NK cells.  相似文献   

20.
Wild-type V(D)J recombination in scid pre-B cells.   总被引:14,自引:8,他引:6       下载免费PDF全文
Homozygous mutation at the scid locus in the mouse results in the aberrant rearrangement of immunoglobulin and T-cell receptor gene segments. We introduced a retroviral vector containing an inversional immunoglobulin rearrangement cassette into scid pre-B cells. Most rearrangements were accompanied by large deletions, consistent with previously characterized effects of the scid mutation. However, two cell clones were identified which contained perfect reciprocal fragments and wild-type coding joints, documenting, on a molecular level, the ability of scid pre-B cells to generate functional protein-coding domains. Subsequent rearrangement of the DGR cassette in one of these clones was accompanied by a deletion, suggesting that this cell clone had not reverted the scid mutation. Indeed, induced rearrangement of the endogenous kappa loci in these two cell clones resulted in a mixture of scid and wild-type V-J kappa joints, as assayed by a polymerase chain reaction and DNA sequencing. In addition, three immunoglobulin mu- scid pre-B cell lines showed both scid and wild-type V-J kappa joins. These experiments strongly suggest that the V(D)J recombinase activity in scid lymphoid cells is diminished but not absent, consistent with the known leakiness of the scid mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号