首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid hormone plays important roles in development, differentiation, and metabolic homeostasis by binding to nuclear thyroid hormone receptors, which regulate target gene expression by interacting with DNA response elements and coregulatory proteins. We show that thyroid hormone receptors also are single-stranded RNA binding proteins and that this binding is functionally significant. By using a series of deletion mutants, a novel RNA-binding domain was localized to a 41-amino acid segment of thyroid hormone receptor alpha1 between the second zinc finger and the ligand-binding domain. This RNA-binding domain was necessary and sufficient for thyroid hormone receptor binding to the steroid receptor RNA activator (SRA). Although SRA does not bind directly to steroid receptors, it has been identified as a steroid receptor coactivator, and was thought not to be a coactivator for thyroid hormone receptors. However, transfection studies revealed that SRA enhances thyroid hormone induction of appropriate reporter genes and that the thyroid hormone receptor RNA-binding domain is important for this enhancement. We conclude that thyroid hormone receptors bind RNA through a novel domain and that the interaction of this domain with SRA, and perhaps other RNAs, enhances thyroid hormone receptor function.  相似文献   

2.
Cellular binding proteins of thyroid hormones   总被引:1,自引:0,他引:1  
K Ichikawa  K Hashizume 《Life sciences》1991,49(21):1513-1522
  相似文献   

3.
4.
5.
Carnitine palmitoyltransferase I (CPT-I) catalyzes the rate-controlling step in the pathway of mitochondrial fatty acid oxidation. Thyroid hormone will stimulate the expression of the liver isoform of CPT-I (CPT-I alpha). This induction of CPT-I alpha gene expression requires the thyroid hormone response element in the promoter and sequences within the first intron. The peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) is a coactivator that promotes mitochondrial biogenesis, mitochondrial fatty acid oxidation, and hepatic gluconeogenesis. In addition, PGC-1 alpha will stimulate the expression of CPT-I alpha in primary rat hepatocytes. Here we report that thyroid hormone will increase PGC-1 alpha mRNA and protein levels in rat hepatocytes. In addition, overexpression of PGC-1 alpha will enhance the thyroid hormone induction of CPT-I alpha indicating that PGC-1 alpha is a coactivator for thyroid hormone. By using chromatin immunoprecipitation assays, we show that PGC-1 alpha is associated with both the thyroid hormone response element in the CPT-I alpha gene promoter and the first intron of the CPT-I alpha gene. Our data demonstrate that PGC-1 alpha participates in the stimulation of CPT-I alpha gene expression by thyroid hormone and suggest that PGC-1 alpha is a coactivator for thyroid hormone.  相似文献   

6.
7.
The effect of thyroid hormone on the turnover of mitochondrial DNA and protein was studied in rat heart and liver. Changes in turnover were observed in both thyroidectomized and normal rats following administration of thyroid hormone. In heart and liver the turnover of mitochondrial DNA and protein was slower in thyroidectomized rats than in normal rats. The turnover of mitochondrial DNA and protein was affected similarly following the administration of thyroid hormone, suggesting that mechanisms which control turnover of mitochondrial constituents may be predicated upon a major part of the mitochondrion. In heart a decreased rate of degradation contributes to the increase in total mitochondrial protein. Mitochondrial DNA, labeled before administration of thyroid hormone, turns over, after the start of thyroid hormone administration, at a different rate from that in newly synthesized DNA. The different turnover rates suggest that in liver the pre-existing population of mitochondria is being replaced by another population synthesized under new physiological conditions.  相似文献   

8.
9.
The mitochondrial phenotype within cardiac muscle cells isdramatically altered by thyroid hormone. We report here that this canbe accounted for, in part, by modifications in the rate of mitochondrial protein import. The import of matrix-localized precursor proteins malate dehydrogenase (MDH) and ornithine carbamoyltransferase was augmented, whereas the insertion of the outer membrane protein Bcl-2 was unaffected by thyroid hormone treatment. Coincident withincreases in the import of these matrix-localized precursors werethyroid hormone-induced elevations in the outer membrane receptor Tom20and the matrix heat-shock protein mthsp70. The phospholipid cardiolipinwas not involved in mediating the thyroid hormone-induced increase inimport, as judged from adriamycin inhibition studies. When the importreaction was supplemented with rat heart cytosol, we found that1) MDH import was stimulated, butBcl-2 import was inhibited and 2)thyroid hormone did not influence the effect of the cytosol on importrates. Thus distinct requirements exist for the mitochondrial import ofprecursor proteins, destined for different organellar compartments.Although import of these matrix-localized proteins was augmented bythyroid hormone treatment, the proteolysis of matrix proteins wasunaffected as indicated by the degradation ofcytob2(167)RIC-dihydrofolatereductase, a chimeric protein missorted to the matrix. Thus our dataindicate that at least some thyroid hormone-induced modifications ofthe mitochondrial phenotype occur due to the compartment-specificupregulation of precursor protein import rates, likely mediated viachanges in the expression of protein import machinery components.

  相似文献   

10.
11.
12.
13.
14.
15.
The induction of growth hormone synthesis and mRNA by thyroid hormone in cultured GH1 cells is mediated by the thyroid hormone nuclear receptor. In addition, the regulation of the growth hormone response by glucocorticoid is highly dependent on the action of thyroid hormone. To clarify whether thyroid hormone has a general influence on glucocorticoid action in GH1 cells, the glucocorticoid induction of growth hormone and glutamine synthetase was simultaneously examined. In contrast to the growth hormone response, the induction of glutamine synthetase by glucocorticoid was not influenced by thyroid hormone. Both responses appear to be modulated by the glucocorticoid receptor, and thyroid hormone had no influence on nuclear-associated glucocorticoid receptor levels. These results suggest that the thyroid hormone control of glucocorticoid induction of growth hormone may be a selective process, and the nuclear associated receptors for both thyroid and glucocorticoid hormones interrelate to control the growth hormone response.  相似文献   

16.
17.
18.
There are two basic mechanisms whereby chemicals produce thyroid gland neoplasia in rodents. The first involves chemicals that exert a direct carcinogenic effect in the thyroid gland and the other involves chemicals which, through a variety of mechanisms, disrupt thyroid function and produce thyroid gland neoplasia secondary to hormone imbalance. These secondary mechanisms predominantly involve effects on thyroid hormone synthesis or peripheral hormone disposition. There are important species differences in thyroid gland physiology between rodents and humans that may account for a marked species difference in the inherent susceptibility for neoplasia to hormone imbalance. Thyroid gland neoplasia, secondary to chemically induced hormone imbalance, is mediated by thyroid-stimulating hormone (TSH) in response to altered thyroid gland function. The effect of TSH on cell proliferation and other aspects of thyroid gland function is a receptor mediated process and the plasma membrane surface of the follicular cell has receptors for TSH and other growth factors. Small organic molecules are not known to be direct TSH receptor agonists or antagonists; however, various antibodies found in autoimmune disease such as Graves' disease can directly stimulate or inhibit the TSH receptor. Certain chemicals can modulate the TSH response for autoregulation of follicular cell function and thereby increase or decrease the response of the follicular cell to TSH. It is thus important to consider mechanisms for the evaluation of potential cancer risks. There would be little if any risk for non-genotoxic chemicals that act secondary to hormone imbalance at exposure levels that do not disrupt thyroid function. Furthermore, the degree of thyroid dysfunction produced by a chemical would present a significant toxicological problem before such exposure would increase the risk for neoplasia in humans.  相似文献   

19.
Control of mitochondrial transcription by thyroid hormone   总被引:7,自引:0,他引:7  
  相似文献   

20.
Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43?/?), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43?/? mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43?/? mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号