首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Deshpande G  Swanhart L  Chiang P  Schedl P 《Cell》2001,106(6):759-769
The primitive gonad of the Drosophila embryo is formed from two cell types, the somatic gonad precursor cells (SGPs) and the germ cells, which originate at distant sites. To reach the SGPs the germ cells must undergo a complex series of cell movements. While there is evidence that attractive and repulsive signals guide germ cell migration through the embryo, the molecular identity of these instructive molecules has remained elusive. Here, we present evidence suggesting that hedgehog (hh) may serve as such an attractive guidance cue. Misexpression of hh in the soma induces germ cells to migrate to inappropriate locations. Conversely, cell-autonomous components of the hh pathway appear to be required in the germline for proper germ cell migration.  相似文献   

2.
The onset of germ cell migration in the mouse embryo   总被引:9,自引:0,他引:9  
Mouse primordial germ cells (PGCs) are specified between embryonic day 6.5 (E6.5) and E7.5, when they have been visualized as an alkaline phosphatase-positive (AP+) cell population in the developing allantois. By E8.5, they are embedded in the hind-gut epithelium. Previous experiments have suggested different sites for PGCs' origin, and it is unclear how they reach the gut epithelium. We have used transgenic mice expressing GFP under a truncated Oct4 promoter to visualize living PGCs. We find GFP+/AP+ cells in the posterior end of the primitive streak as a dispersed population of cells actively migrating into the allantois, and directly into the adjacent embryonic endoderm. Time-lapse analysis shows these cells to be actively migratory from the time they exit the primitive streak.  相似文献   

3.
We wanted to investigate the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the induction of cell migration. Using Drosophila tracheal and mesodermal cell migration as model systems, we find that the intracellular domain of the fibroblast growth factor receptors (FGFRs) Breathless (Btl) and Heartless (Htl) can be functionally replaced by the intracellular domains of Torso (Tor) and epidermal growth factor receptor (EGFR). These hybrid receptors can also rescue cell migration in the absence of Downstream of FGFR (Dof), a cytoplasmic protein essential for FGF signaling. These results demonstrate that tracheal and mesodermal cells respond during a specific time window to a receptor tyrosine kinase (RTK) signal with directed migration, independent of the presence or absence of Dof. We discuss our findings in the light of the recent findings that RTKs generate a generic signal that is interpreted in responding cells according to their developmental history.  相似文献   

4.
Information obtained mainly from in vitro culture studies and genetic analysis of mouse mutants White spotting and Steel indicate a pivotal role of growth factors in the development of mouse primordial germ cells (PGCs). While stem cell factor (SCF) and TGFβ1 seem to have a role in PGC migration (as an adhesion factor and a chemoattractant, respectively), the former is certainly required for PGC survival in vitro and probably in vivo as well. Recent findings suggest that the mechanism by which SCF supports PGC survival is by preventing PGC apoptosis. A similar action appears to be exerted by leukemia inhibitory factor (LIF), a further growth factor influencing PGC growth in culture.PGC proliferation seems to be mainly induced by cAMP dependent mechanisms, but futther investigations are needed to clarify the interrelationships among the different molecular pathways activated by SCF, LIF, cAMP and other putative PGC growth factors (i.e. bFGF). Stimulation of long-term proliferation of PGCs, leading to derivation of ES-like cells (embryonal germ cells) obtained by using a combination of growth factors (bFGF, SCF and LIF), opens new intriguing perspectives for such studies and transgenic technology.  相似文献   

5.
Primordial germ cells (PGCs) in mice have been recognized histologically as alkaline phosphatase (AP) activity-positive cells at 7.2 days post coitum (dpc) in the extra-embryonic mesoderm. However, mechanisms regulating PGC formation are unknown, and an appropriate in vitro system to study the mechanisms has not been established. Therefore, we have developed a primary culture of explanted embryos at pre- and early-streak stages, and have studied roles of cell and/or tissue interactions in PGC formation. The emergence of PGCs from 5.5 dpc epiblasts was observed only when they were co-cultured with extra-embryonic ectoderm, which may induce the conditions required for PGC formation within epiblasts. From 6.0 dpc onwards, PGCs emerged from whole epiblasts as did a fragment of proximal epiblast that corresponds to the area containing presumptive PGC precursors without neighboring extra-embryonic ectoderm and visceral endoderm. Dissociated epiblasts at these stages, however, did not give rise to PGCs, indicating that interactions among a cluster of a specific number of proximal epiblast cells is needed for PGC differentiation. In contrast, we observed that dissociated epiblast cells from a 6.5-b (6.5+15-16 hours) to 6.75 dpc embryo that had undergone gastrulation gave rise to PGCs. Our results demonstrate that stage-dependent tissue and cell interactions play key roles in PGC determination.  相似文献   

6.
The mouse is a suitable experimental model to study the biology of mesenchymal stem cells (MSCs), as well as to be used in biocompatibility studies and tissue engineering models. However, the isolation and purification of murine MSCs is far more challenging than their counterparts from other species. In this study, we isolated, expanded and characterized mouse MSCs from bone marrow (BM-MSCs). Additionally, we analyzed the effects of two regulatory molecules, interleukin 17 (IL-17) and basic fibroblast growth factor (bFGF), on BM-MSCs growth and elucidated the signaling pathways involved. The results revealed that IL-17 increased the frequency of colony-forming units fibroblast (CFU-F) as well as the BM-MSCs proliferation in a dose-dependent manner, while bFGF supplementation had no significant effect on CFU-F frequency but induced an increase in cell proliferation. Their combined usage did not produce additive effects on BM-MSCs proliferation and even induced reduction in the number of CFU-F. Also, the involvement of both p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs) signaling in proliferative activity of IL-17 and bFGF on murine BM-MSCs and, moreover, the increased co-activation of a common signaling molecule, p38 MAPK, were demonstrated. Together, the data presented highlighted the role of IL-17 and bFGF in murine BM-MSCs proliferation and pointed to the complexity and specificity of the signaling networks leading to MSCs proliferation in response to different regulatory molecules.  相似文献   

7.
In this issue of Developmental Cell, a novel mechanism for the initiation of germ cell migration in the mouse has been identified, based upon differential expression of interferon-inducible transmembrane proteins in the gastrula (Tanaka et al., 2005). Germ cells are displaced by a repulsion mechanism from the posterior mesoderm into the endoderm.  相似文献   

8.
Primordial germ cells (PGCs) are the founder cells of the gametes. In mammals, PGCs migrate from the hindgut to the genital ridges, where they coalesce with each other and with somatic cells to form the primary sex cords. We show here that, in both sexes, PGCs express P- and E-cadherins during and after migration, and N-cadherin at post-migratory stages. E-Cadherin is not expressed by PGCs whilst in the hindgut, but is upregulated as they leave. Blocking antibodies against E-, but not P-cadherin cause defective PGC-PGC coalescence, and in some cases, ectopic PGCs.  相似文献   

9.
Primordial germ cell migration   总被引:10,自引:0,他引:10  
  相似文献   

10.
At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell signaling pathways involved in early lineage specification. In mouse, segregation of the primitive endoderm lineage from the pluripotent epiblast lineage depends on FGF/MAP kinase signaling, but it is unknown whether this is conserved between species. Here we examined segregation of the hypoblast and epiblast lineages in bovine and human embryos through modulation of FGF/MAP kinase signaling pathways in cultured embryos. Bovine embryos stimulated with FGF4 and heparin form inner cell masses (ICMs) composed entirely of hypoblast cells and no epiblast cells. Inhibition of MEK in bovine embryos results in ICMs with increased epiblast precursors and decreased hypoblast precursors. The hypoblast precursor population was not fully ablated upon MEK inhibition, indicating that other factors are involved in hypoblast differentiation. Surprisingly, inhibition of FGF signaling upstream of MEK had no effects on epiblast and hypoblast precursor numbers in bovine development, suggesting that GATA6 expression is not dependent on FGF signaling. By contrast, in human embryos, inhibition of MEK did not significantly alter epiblast or hypoblast precursor numbers despite the ability of the MEK inhibitor to potently inhibit ERK phosphorylation in human ES cells. These findings demonstrate intrinsic differences in early mammalian development in the role of the FGF/MAP kinase signaling pathways in governing hypoblast versus epiblast lineage choices.  相似文献   

11.
Guidance of primordial germ cell migration   总被引:4,自引:0,他引:4  
Primordial germ cells (PGCs), the progenitors of the gametes, migrate from the position where they are specified towards the region where the gonad develops. To reach their target, the PGCs obtain directional cues from cells positioned along their migration path. One such cue, the chemokine SDF-1, has recently been found to be critical for proper PGC migration in zebrafish and in mice. In Drosophila, too, a molecule that is structurally related to chemokine receptors and is important for PGC migration has been identified. The ability to visualize chemokine-guided migration at a high resolution in vivo in these model organisms provides a unique opportunity to study this process, which is relevant for many events in normal development and disease.  相似文献   

12.
Specific sulfation sequence of heparan sulfate (HS) contributes to the selective interaction between HS and various proteins in vitro. To clarify the in vivo importance of HS fine structures, we characterized the functions of the Drosophila HS 2-O and 6-O sulfotransferase (Hs2st and Hs6st) genes in FGF-mediated tracheal formation. We found that mutations in Hs2st or Hs6st had unexpectedly little effect on tracheal morphogenesis. Structural analysis of mutant HS revealed not only a loss of corresponding sulfation, but also a compensatory increase of sulfation at other positions, which maintains the level of HS total charge. The restricted phenotypes of Hsst mutants are ascribed to this compensation because FGF signaling is strongly disrupted by Hs2st; Hs6st double mutation, or by overexpression of 6-O sulfatase, an extracellular enzyme which removes 6-O sulfate groups without increasing 2-O sulfation. These findings suggest that the overall sulfation level is more important than strictly defined HS fine structures for FGF signaling in some developmental contexts.  相似文献   

13.
The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway.  相似文献   

14.
Transforming growth factor beta (TGFbeta) inhibits proliferation and promotes the migration of primordial germ cells (PGCs) towards explants of gonadal ridges in vitro. However, its effects in vivo are still unclear. Here, we analyzed the behavior of PGCs in embryos lacking TGFbeta signaling via the type I receptor ALK5. TGFbeta in vivo was neither a chemoattractant for PGCs, nor did it affect their proliferation during migration towards the gonadal ridges up to embryonic day (E)10. Unexpectedly, the absence of TGFbeta signaling in fact resulted in significant facilitation of PGC migration out of the hindgut, due to the reduced deposition of collagen type I surrounding the gut of Alk5-deficient mutant embryos. Migratory PGCs adhere strongly to collagen; therefore, reduced collagen type I along the gut may result in reduced adhesion, facilitating migration into the dorsal mesenterium and gonadal ridges. Our results provide new evidence for the role of TGFbeta signaling in migration of PGCs in vivo distinct from that described previously.  相似文献   

15.
Cell migration influences cell-cell interactions to drive cell differentiation and organogenesis. To support proper development, cell migration must be regulated both temporally and spatially. Mesoderm cell migration in the Drosophila embryo serves as an excellent model system to study how cell migration is controlled and influences organogenesis. First, mesoderm spreading transforms the embryo into a multilayered form during gastrulation and, subsequently, cells originating from the caudal visceral mesoderm (CVM) migrate along the entire length of the gut. Here we review our studies, which have focused on the role of fibroblast growth factor (FGF) signaling, and compare and contrast these two different cell migration processes: mesoderm spreading and CVM migration. In both cases, FGF acts as a chemoattractant to guide cells’ directional movement but is likely not the only signal that serves this role. Furthermore, FGF likely modulates cell adhesion properties since FGF mutant phenotypes share similarities with those of cell adhesion molecules. Our working hypothesis is that levels of FGF signaling differentially influence cells’ response to result in either directional movement or changes in adhesive properties.  相似文献   

16.
The development of mouse primordial germ cells is followed from their first appearance in the extraembryonic mesoderm of the posterior amniotic fold (7 dpc embryo) to their settlement in the genital ridges (12.5 dpc embryo). The role of fibronectin as adhesive substrate and/or in stimulating cell motility during PGC migration is discussed. Recent papers showing how PGCs migrate when cultured in vitro on cellular monolayers are reviewed. The process of PGC homing is proposed to be controlled by chemotaxis as well by developmentally regulated cell-to-cell interactions. Finally, evidence that survival and proliferation of PGCs is strictly dependent on growth factors such as LIF and MGF, and possibly on a cAMP-dependent mechanism is reported.  相似文献   

17.
In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules.  相似文献   

18.
Both the uterus and vagina develop from the Müllerian duct but are quite distinct in morphology and function. To investigate factors controlling epithelial differentiation and cell proliferation in neonatal uterus and vagina, we focused on Hedgehog (HH) signaling. In neonatal mice, Sonic hh (Shh) was localized in the vaginal epithelium and Indian hh (Ihh) was slightly expressed in the uterus and vagina, whereas all Glioma-associated oncogene homolog (Gli) genes were mainly expressed in the stroma. The expression of target genes of HH signaling was high in the neonatal vagina and in the uterus, it increased with growth. Thus, in neonatal mice, Shh in the vaginal epithelium and Ihh in the uterus and vagina activated HH signaling in the stroma. Tissue recombinants showed that vaginal Shh expression was inhibited by the vaginal stroma and uterine Ihh expression was stimulated by the uterine stroma. Addition of a HH signaling inhibitor decreased epithelial cell proliferation in organ-cultured uterus and vagina and increased stromal cell proliferation in organ-cultured uterus. However, it did not affect epithelial differentiation or the expression of growth factors in organ-cultured uterus and vagina. Thus, activated HH signaling stimulates epithelial cell proliferation in neonatal uterus and vagina but inhibits stromal cell proliferation in neonatal uterus.  相似文献   

19.
Development of a functional organ requires the establishment of its proper size as well as the establishment of the relative proportions of its individual components. In the zebrafish heart, organ size and proportion depend heavily on the number of cells in each of its two major chambers, the ventricle and the atrium. Heart size and chamber proportionality are both affected in zebrafish fgf8 mutants. To determine when and how FGF signaling influences these characteristics, we examined the effect of temporally controlled pathway inhibition. During cardiac specification, reduction of FGF signaling inhibits formation of both ventricular and atrial cardiomyocytes, with a stronger impact on ventricular cells. After cardiomyocyte differentiation begins, reduction of FGF signaling can still result in a deficiency of ventricular cardiomyocytes. Consistent with two temporally distinct roles for FGF, we find that increased FGF signaling induces a cardiomyocyte surplus only before cardiac differentiation begins. Thus, FGF signaling first regulates heart size and chamber proportionality during cardiac specification and later refines ventricular proportion by regulating cell number after the onset of differentiation. Together, our data demonstrate that a single signaling pathway can act reiteratively to coordinate organ size and proportion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号