首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of an attempt to understand the specific function and role of each subunit in multisubunit protein synthesis factors, we have attempted to identify the nucleotide binding peptides of eukaryotic initiation factor 2 (eIF-2). To ensure that the interactions were of a specific nature, two general controls were used: first, other protein factors with characterized GTP binding activity were tested; second, all affinity labeling was checked for nucleotide specificity by protection with the authentic nucleotide at a 10-fold molar excess over the affinity reagent. Results with a number of GTP modifying reagents ([alpha-32P]GTP, [alpha-32P]GDP, oxidized [alpha-32P]GTP, 3'-p-azidobenzoyl-[alpha-32P]GTP, 3'-p-azidobenzoyl-[alpha-32P]GDP, and 5'-p-[8-3H]fluorosulfonylbenzoyl guanosine) indicate that appropriate conditions for both nucleotide and subunit specific labeling have been achieved. Under these conditions all reagents modified the beta subunit of eIF-2. Complementary studies with subunit-deficient forms of eIF-2 also suggest that the beta subunit of eIF-2 is involved with GTP binding. Coupled with other data suggesting that the gamma subunit of eIF-2 might be involved in GTP binding and amino acid sequence data of eIF-2 gamma from which a part of a GTP binding consensus sequence can be localized, support is provided for the concept of alternate GTP binding domains or a GTP binding domain shared between different subunits of eIF-2.  相似文献   

2.
C T Lewis  B E Haley  G M Carlson 《Biochemistry》1989,28(24):9248-9255
Phosphoenolpyruvate carboxykinase (GTP) (PEPCK) specifically utilizes a guanosine or inosine nucleotide as a substrate, yet it does not share extended sequence homology with other GTP-binding proteins, and the molecular basis for its nucleotide specificity is not understood. In an effort to locate the enzyme's nucleotide-binding site, we have studied the interaction of cytosolic PEPCK from rat liver with the photoprobe 8-azidoGTP, which fulfills the criteria of a specific photoaffinity label for PEPCK. The photoprobe binds reversibly to the enzyme prior to modification and at low concentrations causes greater than 60% inactivation (Ki = 1.2 microM). GTP provides nearly complete protection against inactivation by 8-azidoGTP, whereas phosphoenolpyruvate and metal ions provide partial protection. In addition, the photoprobe is a substrate for the enzyme and has a Km similar to that for GTP. However, the extent of covalent modification by [32P]8-azidoGTP as measured by three independent techniques is significantly lower than the extent of enzyme inactivation. Further investigation of this anomaly has revealed that the loss in enzymatic activity is caused by modification of a critical cysteine residue in a reaction that does not terminate with covalent attachment of the photolabel. Quantitation of the total free thiols of modified PEPCK shows that 2 mol of cysteine is lost per mole of inactivated enzyme. These results indicate that the photoinactivation of PEPCK by 8-azidoGTP is caused by the formation of an intramolecular cystine disulfide bridge, thus providing evidence for the existence of a pair of proximal cysteine residues within the GTP-binding site. The interaction of cysteine residues with the reactive photogenerated derivatives of 8-azidopurines is discussed.  相似文献   

3.
Assembly-competent microtubule protein was directly photoaffinity labeled with [alpha-32P]guanosine triphosphate by UV irradiation. The labeled tubulin was digested with trypsin. The radioactive fragments were isolated and sequenced, revealing beta-tubulin residues 155-174 to be the major labeled region. An antibody to a synthetic peptide comprising residues beta 154-165 inhibits GTP incorporation and tubulin polymerization.  相似文献   

4.
Activation of epidermal growth factor (EGF) receptors stimulates inositol phosphate production in rat hepatocytes via a pertussis toxin-sensitive mechanism, suggesting the involvement of a G protein in the process. Since the first event after receptor-G protein interaction is exchange of GTP for GDP on the G protein, the effect of EGF was measured on the initial rates of guanosine 5'-O-(3-[35S]thiotriphosphate) [( 35S]GTP gamma S) association and [alpha-32P]GDP dissociation in rat hepatocyte membranes. The initial rate of [35S]GTP gamma S binding was stimulated by EGF, with a maximal effect observed at 8 nM EGF. EGF also increased the initial rate of [alpha-32P]GDP dissociation. The effect of EGF on [35S]GTP gamma S association was blocked by boiling the peptide for 5 min in 5 mM dithiothreitol or by incubation of the membranes with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). EGF-stimulated [35S]GTP gamma S binding was completely abolished in hepatocyte membranes prepared from pertussis toxin-treated rats and was inhibited in hepatocyte membranes that were treated directly with the resolved A-subunit of pertussis toxin. The amount of guanine nucleotide binding affected by occupation of the EGF receptor was approximately 6 pmol/mg of membrane protein. Occupation of angiotensin II receptors, which are known to couple to G proteins in hepatic membranes, also stimulated [35S]GTP gamma S association with and [alpha-32P]GDP dissociation from the membranes. The effect of angiotensin II on [alpha-32P]GDP dissociation was blocked by the angiotensin II receptor antagonist [Sar1,Ile8]angiotensin II, demonstrating that the guanine nucleotide binding was receptor-mediated. In A431 human epidermoid carcinoma cells, EGF stimulates inositol lipid breakdown, but the effect is not blocked by treatment of the cells with pertussis toxin. In these cells, EGF had no effect on [35S]GTP gamma S binding. Occupation of the beta-adrenergic receptor in A431 cell membranes with isoproterenol did stimulate [35S] GTP gamma S binding, and the effect could be completely blocked by l-propranolol. These results support the concept that in hepatocyte membranes, EGF receptors interact with a pertussis toxin-sensitive G protein via a mechanism similar to other hormone receptor-G protein interactions, but that in A431 human epidermoid carcinoma cells, EGF may activate phospholipase C via different mechanisms.  相似文献   

5.
As a first step in determining the molecular mechanism of membrane fusion stimulated by GTP in rough endoplasmic reticulum (RER), we have looked for GTP-binding proteins. Rough microsomes from rat liver were treated for the release of ribosomes, and the membrane proteins were separated by SDS/polyacrylamide-gel electrophoresis. The polypeptides were then blotted on to nitrocellulose sheets and incubated with [alpha-32P]GTP [Bhullar & Haslam (1987) Biochem. J. 245, 617-620]. A doublet of polypeptides (23 and 24 kDa) was detected in the presence of 2 microM-MgCl2. Binding of [alpha-32P]GTP was blocked by 1-5 mM-EDTA, 10-10,000 nM-GTP or 10 microM-GDP. Either guanosine 5'-[gamma-thio]triphosphate or guanosine 5'-[beta gamma-imido]triphosphate at 100 nM completely inhibited binding, but ATP, CTP or UTP at 10 mciroM did not. Pretreatment of microsomes by mild trypsin treatment (0.5-10 micrograms of trypsin/ml, concentrations known not to affect microsomal permeability) led to inhibition of [alpha-32P]GTP binding, suggesting a cytosolic membrane orientation for the GTP-binding proteins. Two-dimensional gel-electrophoretic analysis revealed the 23 and 24 kDa [alpha-32P]GTP-binding proteins to have similar acid isoelectric points. [alpha-32P]GTP binding occurred to similar proteins of rough microsomes from rat liver, rat prostate and dog pancreas, as well as to a 23 kDa protein of rough microsomes from frog liver, but occurred to distinctly different proteins in a rat liver plasma-membrane-enriched fraction. Thus [alpha-32P]GTP binding has been demonstrated to two low-molecular-mass (approx. 21 kDa) proteins in the rough endoplasmic reticulum of several varied cell types.  相似文献   

6.
Several G-proteins (GTP-binding proteins) were identified by SDS/PAGE in the cytosol (105,000 g supernatant) and membrane fractions of the oestrogen-dependent human mammary-tumour cell line ZR-75-1. These proteins, with molecular masses in the range 18-29 kDa, specifically bind [alpha-32P]GTP, which can be displaced by unlabelled GTP, GDP and their non-hydrolysable analogues guanosine 5'-[delta-thio]triphosphate (GTP[S]) and guanosine 5'-[beta-thio]diphosphate (GDP[S]), but not by GMP, ATP, ADP, AMP and other unrelated nucleotides. The apparent dissociation constant for GTP was approx. 2 x 10(-8)M. Homogenization of ZR-75-1 cells in high-salt buffer (1 M-KCl), and successive washing of the membrane fraction, suggested that, among the major G-proteins found, the 18 kDa protein is predominantly soluble, whereas the 27-29 kDa complex is primarily bound to the membrane fraction under the experimental conditions employed. Possible translocation of these G-proteins between membrane and cytosol was analysed. No redistribution of the 27-29 kDa complex was observed, whereas GTP[S] in the presence of Mg2+ caused apparent translocation of the 18 kDa protein to the membrane fraction. This effect was specific for GTP and stable GTP analogues, whereas GDP, GMP, ATP, ADP, AMP and other unrelated nucleotides were ineffective. GTP[S] and guanosine 5'-[beta gamma-imido]-triphosphate (p[NH]ppG) were equally potent (apparent Kd approximately 5 x 10(-6)M), whereas GTP was rather weak. The nucleotide effect is temperature-, time- and concentration-dependent. The translocation process was reversible, slow, and reached its maximum between 30 and 60 min at 37 degrees C. The apparent translocation of this small G-protein from the cytosol to the membrane fraction, and the specific effect of GTP analogues, suggest that this process may have functional significance in mammary-tumour cells.  相似文献   

7.
Glucagon, a peptide hormone synthesized and secreted by alpha islet cells, regulates glucose homeostasis by several mechanisms. Using [gamma 32P]8N3GTP, a proven photoaffinity probe for GTP, a specific nucleotide binding site on human glucagon was detected that showed preference for GTP. Half-maximal saturation of photoinsertion into the polypeptide hormone was at 8-12 microM with either [alpha 32P]8N3GTP or [gamma 32P]8N3GTP. GTP protected photolabeling with an apparent kd of 15 microM, whereas ATP was less effective as a protector, exhibiting an apparent kd of about 30 microM. Maximal protection by GTP and ATP was over 90%. UTP, CTP, GDP, ADP, GMP, AMP, guanosine, adenosine, guanine, and adenine were much less effective protectors, indicating that binding is specific for purine nucleoside triphosphates, particularly GTP. Mg2+ at 150 microM enhanced photoinsertion (twofold), whereas at 2-10 mM, it inhibited photoinsertion. Both Ca2+ and Zn2+ at 0.2 mM decreased photoinsertion about 45%. Purification of chymotryptic and tryptic digests of photolabeled glucagon by reverse-phase high performance liquid chromatography (HPLC) revealed that the N-terminal peptide, HSQGTF, was the only peptide region covalently photomodified by [32P]8N3GTP. GTP, if present during photolysis, greatly reduced both photoinsertion into glucagon and the amount of radiolabeled peptide recovered on HPLC. The specificity of binding to the N-terminal region is suggestive of a physiological role for a glucagon-GTP complex in the mechanism of action of this hormone.  相似文献   

8.
9.
Holyoak T  Nowak T 《Biochemistry》2001,40(37):11037-11047
The enzyme phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the reversible conversion of oxalacetate and GTP to phosphoenolpyruvate (PEP), GDP, and CO2. PEPCK from higher organisms is a monomer, specifically requires GTP or ITP, and uses Mn2+ as the activating cation. Currently, there is no crystal structure of GTP-utilizing PEPCKs. The conformation of the bound nucleotide was determined from transferred nuclear Overhauser effects (trnOe) experiments to determine internuclear proton distances. At 600 MHz in the presence of PEPCK, nOe effects were observed between nucleotide protons. Internuclear distances were calculated from the initial rate of the nOe buildup. These distance constraints were used in energy minimization calculations to determine the conformation of PEPCK-bound GTP. The bound nucleotide has the base oriented anti to the C2'-endo(2E) ribose ring conformation. Relaxation rate studies indicate that there is an additional relaxation effect on the C1' proton upon nucleotide binding to PEPCK. Nucleotide binding to PEPCK-Mn2+ was studied by 1H relaxation rate studies, but results were complicated by long dipole-dipole distances and the presence of competing complexes. Modification of PEPCK by iodoacetamido-TEMPO leads to an inactive enzyme that is spin-labeled at cys273. The interaction of TEMPO-PEPCK with GTP allows for the measurement of nuclear distances between GTP and the spin label. The results suggest that cys273 lies near the ribose ring of the bound nucleotide, but it is too far to be implicated in direct hydrogen bonding interactions consistent with previous results [Makinen, A. L., and Nowak, T. J. Biol. Chem. (1989) 264, 12148], suggesting that cys273 does not actively participate in catalysis. Modification of PEPCK with several cysteine specific modifying agents causes no change in the ability of the enzyme to bind nucleotide as monitored by fluorescence quenching. A correlation between the size of the modifying agent and the maximal observed quenching upon saturation of the enzyme with nucleotide is observed. This suggests a mechanism for inactivation of PEPCK by cysteine modification due to inhibition of a dynamic motion that may occur upon nucleotide binding.  相似文献   

10.
Identification of the GTP-binding proteins from human platelet particulate fractions was attained by their purification via successive column chromatography steps followed by amino acid sequencing. To enhance the likelihood of identifying the GTP-binding proteins, two assays were employed to monitor GTP-binding activities: (i) guanosine 5'-(3-O-[35S]thio)triphosphate (GTP gamma S)-binding followed by rapid filtration and ii) [alpha-32P]GTP-binding following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting onto nitrocellulose membranes. The latter assay permitted the isolation of a 28-kDa GTP-binding protein that bound [alpha-32P]GTP prominently but was only poorly detected with the GTP gamma S-binding assay. The amino acid sequences of three peptide fragments derived from the 28-kDa protein were identical to regions of the amino acid sequence deduced from a simian ral cDNA with the exception of one conservative substitution (Asp147----Glu). A full length human ral cDNA was isolated from a placental cDNA library, and its deduced amino acid sequence, compared with simian ral, also contained the Asp----Glu substitution along with two other substitutions and an additional three NH2-terminal amino acids. In addition to the 28-kDa protein, two distinct 25-kDa GTP-binding proteins were purified from platelets. One of these proteins has been previously characterized as G25K, an abundant low molecular mass GTP-binding protein. Partial amino acid sequence obtained from the second unidentified 25-kDa protein indicates that it is the product of the rac1 gene; a member of a newly identified gene family which encode for low molecular mass GTP-binding proteins (Didsbury, J., Weber, R.F., Bokoch, G. M., Evans, T., and Snyderman, R. (1989) J. Biol. Chem. 264, 16378-16382). These results identify two new GTP-binding proteins in human platelets, ral, the major protein that binds [alpha-32P]GTP on nitrocellulose transfers, and rac1, a substrate for botulinum C3 ADP-ribosyltransferase.  相似文献   

11.
Chasmagnathus granulata phosphoenolpyruvate carboxykinase (PEPCK) cDNA from jaw muscle was cloned and sequenced, showing a specific domain to bind phosphoenolpyruvate in addition to the kinase-1 and kinase-2 motifs to bind guanosine triphosphate (GTP) and Mg(2+), respectively, specific for all PEPCKs. In the kinase-1 motifs the GK was changed to RK. The first 19 amino acids of the putative enzyme contain hydrophobic amino acids and hydroxylated residues specific to a mitochondrial type signal. The PEPCK is expressed in hepatopancreas, muscles, nervous system, heart, and gills. Hyperosmotic stress for 24 h increased the PEPCK mRNA level, gluconeogenic and PEPCK activities in muscle.  相似文献   

12.
Previous studies have identified the guanine and adenine binding domains of the GTP and ADP binding sites of GDH. In this study the peptide sequences within or near to the terminal phosphate-binding domains of the GTP and ADP binding sites of bovine liver glutamate dehydrogenase (GDH) were identified using photoaffinity labeling with the benzophenone nucleotide derivatives, [gamma-32P]GTPgammaBP and [gamma-32P]ATPgammaBP. Without activating light, GTPgammaBP exhibited inhibiting effects on the GDH reaction similar to GTP; ATPgammaBP, as expected, produced activating effects similar to those of ADP. Photoinsertion into GDH by both probes exhibited saturation effects in agreement with the respective kinetic effects. Specificity of labeling was supported by specific and effective reduction of photoinsertion of [gamma-32P]GTPgammaBP and [gamma-32P]ATPgammaBP into GDH by GTP and ADP, respectively. Using a combination of immobilized Fe3+-chelate affinity chromatography and reversed-phase HPLC, photolabeled peptides located within or near the phosphate-binding domains of the GTP and ADP sites were isolated. Sequence analysis showed that GTPgammaBP primarily modified a peptide near the middle of the GDH sequence, Asn135-Lys143 and Glu290-Lys295. However, ATPgammaBP modified a single peptide corresponding to the sequence Met411-Arg419 near the C-terminal domain. Using these results and the data from the previously identified base-binding domain peptides the orientation of GTP and ADP within their respective binding sites in the catalytic cleft of GDH is proposed and explained on the basis of a proposed three-dimensional schematic model structure derived from the bacterial enzyme.  相似文献   

13.
Direct photoaffinity labeling of tubulin with guanosine 5'-triphosphate   总被引:6,自引:0,他引:6  
J P Nath  G R Eagle  R H Himes 《Biochemistry》1985,24(6):1555-1560
Irradiation of tubulin in the presence of [3H]GTP or [3H]GDP at 254 nm led to the covalent incorporation of nucleotide into the protein. The specific nature of the labeling was shown in the following manner: with tubulin depleted of exchangeable nucleotide, the amount of labeling increased to a plateau value as the [3H]GTP concentration was increased, with saturation being reached at a ratio of approximately 1.5; the same amount of labeling was obtained with GTP/tubulin ratios of 1 and 100; [3H]GMP was not incorporated into the dimer, nor did GMP inhibit the incorporation of [3H]GTP; [3H]ATP was not incorporated; [3H]GTP incorporation did not occur into denatured tubulin or into serum albumin. When [alpha-32P]GTP was used in the irradiation experiments, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the carboxymethylated protein demonstrated that the incorporated label was associated with the beta subunit. The radiation treatment did cause changes in the tubulin molecule resulting in a decrease in assembly competence and in sulfhydryl groups, but these effects were minimized when a large excess of GTP was present during irradiation. Labeling of tubulin in the assembled state was much less than that observed in the free state.  相似文献   

14.
Incorporation of 32P from [gamma-32P]ATP into phosphatidylinositol 4,5-bisphosphate (PIP2) in membranes isolated from rat brain was enhanced in a concentration-dependent manner by the GTP analogue guanosine 5'-O-(thio)triphosphate (GTP gamma S). In contrast, neither the labeling of phosphatidylinositol 4-phosphate in the same membranes nor PIP kinase activity in the soluble fraction were stimulated by GTP gamma S. Synthesis of [32P]PIP2 was not stimulated by GTP, GDP, GMP, or ATP; however, the stimulatory effects of GTP gamma S were antagonized by GTP, GDP, and guanosine 5'-O-thiodiphosphate (GDP beta S). The nucleotide-stimulated labeling of PIP2 was not due to protection of [gamma-32P] ATP from hydrolysis, activation of PIP2 hydrolysis by phospholipase C, or inhibition of PIP2 hydrolysis by its phosphomonoesterase. Therefore, phosphatidylinositol 4-phosphate kinase activity in brain membranes may be regulated by a guanine nucleotide regulatory protein. This system may enhance the resynthesis of PIP2 following receptor-mediated activation of phospholipase C.  相似文献   

15.
The presence of specific guanine nucleotide-binding proteins in a zucchini (Cucurbita pepo L.) hypocotyl microsomal fraction was investigated. Polypeptides were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and transferred to nitrocellulose. Incubation of nitrocellulose blots with [alpha-32P]GTP and [gamma-32P]GTP indicated the presence of four specific and distinct GTP-binding proteins with molecular masses of approx. 23.4 kDa, 24.8 kDa, 26.6 kDa and 28.5 kDa. Binding of [alpha-32P]GTP could be completely prevented by 30 microM GDP or 10 microM guanosine 5'[gamma-thio]triphosphate. This report presents evidence for the presence in a microsomal fraction from zucchini hypocotyls of Gn-proteins as defined by Bhullar and Haslam (1987) Biochem.J. 245, 617-620. The four plant proteins resemble animal Gn-proteins when molecular weights and GTP-binding specificities are considered.  相似文献   

16.
Binding of the poorly hydrolyzable GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to purified guanine-nucleotide-binding regulatory proteins (G proteins) has been shown to be nonreversible in the presence of millimolar concentrations of Mg2+. In porcine atrial membranes, binding of [35S]GTP[S] to G proteins was stable in the presence of 1 mM Mg2+. However, either large dilution or, even more strongly, addition of unlabelled guanine nucleotides, in the potency order, GTP[S] greater than GTP greater than or equal to guanosine 5'-[beta,gamma-imino]triphosphate greater than GDP greater than or equal to guanosine 5'-[beta-thio]diphosphate greater than GMP, markedly enhanced the observed dissociation, with 20-30% of bound [35S]GTP[S] being released by unlabelled guanine nucleotide within 20 min at 25 degrees C. Most interestingly, dissociation of [35S]GTP[S] was rapidly and markedly stimulated by agonist (carbachol) activation of cardiac muscarinic acetylcholine receptors. Carbachol-stimulated release of [35S]GTP[S] was strictly dependent on the presence of Mg2+ and an unlabelled guanine nucleotide. Although having different potency and efficiency in releasing [35S]GTP[S] from the membranes by themselves, the guanine nucleoside triphosphates and diphosphates studied, at maximally effective concentrations, promoted the carbachol-induced dissociation to the same extent, while GMP and ATP were ineffective. GTP[S]-binding-saturation experiments indicated that one agonist-activated muscarinic acetylcholine receptor can cause release of bound GTP[S] from three to four G proteins. The data presented indicate that binding of GTP[S] to G proteins in intact membranes, in contrast to purified G proteins, is reversible, and that agonist-activated receptors can even, either directly or indirectly, interact with GTP[S]-bound G proteins, resulting in release of bound guanine nucleoside triphosphate.  相似文献   

17.
A method for the synthesis and purification of guanosine 5'-[gamma-S]triphosphate labeled with 32P in the beta-position is described. The first step in the synthesis involves the quantitative transfer of 32Pi from [gamma-32P]dATP to 5'-GMP catalyzed by GMP kinase. Further incubation of the beta-32P]GDP product with [gamma-S]GTP and nucleoside diphosphate kinase results in the synthesis of [beta-32P][gamma-S]GTP with a yield of 10 to 18%. The 32P-labeled [gamma-S]nucleotide is purified by binding to mercury-agarose and eluting with buffer containing beta-mercaptoethanol. Specific incorporation of 32P into the beta-position was demonstrated by treating [beta-32P][gamma-S]GTP with 7% formic acid to remove the gamma-thiophosphate and digesting the remaining [beta-32P]GDP with nucleotide pyro-phosphatase. Although 5'-GMP was released after pyrophosphatase digestion, the only 32P radioactivity detected was as inorganic phosphate.  相似文献   

18.
Incubation of [alpha-32P]GTP with cellular extracts or membranes of Streptomyces coelicolor labels a protein of 43 kDa, which was also labeled with [8,5'-3H]GTP but not with [alpha-32P]ATP or [gamma-32P]GTP. Radioactivity remained associated with this protein after boiling in 0.1 N NaOH, but it was dissociated after incubation in 0.1 N HCl or hydroxylamine. Chromatographic analysis of the HCl-dissociated compound showed that GMP was the covalently bound nucleotide. Furthermore, guanylylation appeared to be reversible and to take place by a pyrophosphorylytic mechanism. Guanylylation was more efficient at low temperatures. Several Streptomyces species showed a guanylylated protein with a similar molecular mass.  相似文献   

19.
A rapid and inexpensive method has been developed for the synthesis of 32P-labeled guanosine 5'-triphosphate (GTP). When yolk platelets isolated from brine shrimp cysts are incubated with 32PPi at pH 5.8 and in the presence of 10 mM MgCl2 and 5 mM dithiothreitol, the primary compound formed is [beta,gamma-32P]GTP. The synthetic reaction is catalyzed by the yolk platelet enzyme, GTP : GTP guanylyltransferase, which has been demonstrated to be important in the biosynthesis of diguanosine 5'-tetraphosphate (Gp4G), the major purine nucleotide in brine shrimp yolk platelets and encysted embryos.  相似文献   

20.
In membranes derived from NG108-15 cells, the opioid peptide [D-Ala2,D-Leu5]enkephalin (DADLE) stimulates a low Km GTPase. The nucleotide analogs guanosine 5'-O-(2-thio)diphosphate (GDP beta S), guanosine 5'-(beta,gamma-imido)triphosphate [Gpp(NH)p] and guanosine 5'-O-(3-thio)-triphosphate (GTP gamma S) inhibit the basal enzymatic activity with the order of potency GTP gamma S greater than Gpp (NH)p greater than GDP beta S. In the presence of DADLE, the inhibition isotherms of GDP beta S and Gpp(NH)p are shifted to the right five- and fourfold, respectively, compared to the inhibition observed in the absence of DADLE. In contrast, the IC50 of GTP gamma S for inhibiting the enzyme is reduced by 55% in the presence of the opioid. Both Gpp(NH)p and GTP gamma S produce a concentration-dependent increase in the Km(app) of GTPase, without affecting its Vmax, indicating a competitive inhibition. However, the replots of Km(app) versus inhibitor concentration are hyperbolic, suggesting a partial type of inhibition. Both Gpp(NH)p and GTP gamma S, but not GTP, induce an increase in the EC50 of DADLE for stimulating GTPase. These findings indicate that the basal and the opioid-stimulated low Km GTPase differ in their respective sensitivities to inhibition by guanine nucleotide analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号