首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Solvent properties of aqueous media (dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were measured in the coexisting phases of Dextran–PEG aqueous two-phase systems (ATPSs) containing .5 and 2.0 M urea. The differences between the electrostatic and hydrophobic properties of the phases in the ATPSs were quantified by analysis of partitioning of the homologous series of sodium salts of dinitrophenylated amino acids with aliphatic alkyl side chains. Furthermore, partitioning of eleven different proteins in the ATPSs was studied. The analysis of protein partition behavior in a set of ATPSs with protective osmolytes (sorbitol, sucrose, trehalose, and TMAO) at the concentration of .5 M, in osmolyte-free ATPS, and in ATPSs with .5 or 2.0 M urea in terms of the solvent properties of the phases was performed. The results show unambiguously that even at the urea concentration of .5 M, this denaturant affects partitioning of all proteins (except concanavalin A) through direct urea–protein interactions and via its effect on the solvent properties of the media. The direct urea–protein interactions seem to prevail over the urea effects on the solvent properties of water at the concentration of .5 M urea and appear to be completely dominant at 2.0 M urea concentration.  相似文献   

6.
Wedding RT  Dole P  Chardot TP  Wu MX 《Plant physiology》1992,100(3):1366-1368
Phosphoenolpyruvate carboxylase purified from leaves of maize (Zea mays, L.) is sensitive to the presence of urea. Exposure to 2.5 m urea for 30 min completely inactivates the enzyme, whereas for a concentration of 1.5 m urea, about 1 h is required. Malate appears to have no effect on inactivation by urea of phosphoenolpyruvate carboxylase. However, the presence of 20 mm phosphoenolpyruvate or 20 mm glucose-6-phosphate prevents significant inactivation by 1.5 m urea for at least 1 h. The inactivation by urea is reversible by dilution. The inhibition by urea and the protective effects of phosphoenolpyruvate and glucose-6-phosphate are associated with changes in aggregation state.  相似文献   

7.
8.
9.
Transport of urea at low concentrations in Chlamydomonas reinhardi.   总被引:5,自引:1,他引:4       下载免费PDF全文
Urea transport into the unicellular green alga Chlamydomonas reinhardi was investigated to further our understanding of controls operating on urea catabolism in this organism. Transport into cells grown with acetate and deprived of ammonia is a saturable process, mediated by at least two systems operating maximally at different external urea concentrations. The lower concentration system, with an apparent Km for urea of 5.1 micron, was the object of detailed study. Transport of urea from a saturating concentration (57 micron) into ammonia- and acetate-grown cells freshly suspended in ammonia-limited medium was not detected. Upon further culturing in the absence of ammonia, derepression occurred with transport ability, first appearing at about 1 h , reaching a maximum at about 2 h, and maintaining this maximum at least 5 h. In contrast to this, CO2-grown cells became derepressed more slowly, and maximum transport ability was not maintained. Addition of ammonia or methylamine (5 mM) during nitrogen deprivation prevented further increases in transport ability and caused loss of previously acquired transport ability. Cycloheximide (10 microng/ml) had a similar effect. Energy uncouplers or dark, anaerobic conditions depressed transport. By these criteria, transport from low urea concentrations is mediated by a process that requires protein synthesis and activation by cellular energy, and the process has a rapid rate of turnover and of deactivation by ammonia.  相似文献   

10.
11.
Low concentrations of urea (1.2 M) stimulated the activity of endo-xylanase from Chainia by 30%. Subtle structural changes in the monomeric protein were reflected in the secondary and tertiary structure of the enzyme as monitored by fluorescence and circular dichroism. Changes in lambda(max) of emission, the fluorescence intensity and the Stern-Volmer quenching constants for acrylamide, measured in the presence of urea, indicated changes in the microenvironment of the Trp residues, suggesting alterations in tertiary structure. The ellipticity changes at 220 nm and Selcon analysis reflected changes in the content of beta-sheet while both the near- and far-UV CD spectra indicated alterations in the secondary and tertiary structure of the protein in presence of urea. The dissociation constant values (K(d)) show very little change in the affinity of the enzyme for the substrate while the k(cat) values suggest enhanced turnover of the substrate in presence of urea. We suggest that low urea concentrations perturb the conformational state of xylanase leading to an open and a more flexible structure, resulting in enhanced catalytic rates.  相似文献   

12.
Using the methods of far-ultraviolet circular dichroism (CD) spectra, fluorescence spectra, and enzyme activity assays, the inactivation and conformational changes of creatine kinase (CK) induced by 1,1,1,3,3,3-hexafluoro-2-propanol (hexafluoroisopropanol (HFIP)) of different concentrations were investigated. To avoid the aggregation of CK that occurs with high HFIP, concentrations of 0%-5% HFIP were used in this study. The CD spectra showed that HFIP concentrations above 2.5% strongly induced the formation of secondary structures of CK. No marked conformational changes were observed at low concentrations of HFIP (0%-2.5%). After incubation with 0.2% HFIP for 10 min, CK lost most of its activity. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity described previously by Tsou was applied to study the kinetics of CK inactivation during denaturation by HFIP. The inactivation rate constants for the free enzyme and the substrate-enzyme complex were determined by Tsou's method. The results suggested that low concentrations of HFIP had a high potential to induce helices of protein and that the active site of the enzyme was situated in a limited and flexible region of the enzyme molecule that was more susceptible to the denaturant than was the protein as a whole.  相似文献   

13.
14.
15.
Urea is one of the most commonly used denaturants of proteins. However, herein we report that enzymes lyophilized from denaturing concentrations of aqueous urea exhibited much higher activity in organic solvents than their native counterparts. Thus, instead of causing deactivation, urea effected unexpected activation of enzymes suspended in organic media. Activation of subtilisin Carlsberg (SC) in the organic solvents (hexane, tetrahydrofuran, and acetone) increased with increasing urea concentrations up to 8 M. Active-site titration results and activity assays indicated the presence of partially unfolded but catalytically active SC in 8 M urea; however, the urea-modified enzyme retained high enantioselectivity and was ca. 80 times more active than the native enzyme in anhydrous hexane. Likewise, the activity of horseradish peroxidase (HRP) lyophilized from 8 M urea was ca. 56 times and 350 times higher in 97% acetone and water-saturated hexane, respectively, than the activity of HRP lyophilized from aqueous buffer. Compared with the native enzyme, the partially unfolded enzyme may have a more pliant and less rigid conformation in organic solvents, thus enabling it to retain higher catalytic activity. However, no substantial activation was observed for alpha-chymotrypsin lyophilized from urea solutions in which the enzyme retained some activity, illustrating that the activation effect is not completely general.  相似文献   

16.
17.
18.
19.
20.
Skeletal-muscle phosphorylase kinase is a hexadecameric oligomer composed of equivalent amounts of four different subunits, (alpha beta gamma delta)4. The delta-subunit, which is calmodulin, functions as an integral subunit of the oligomer, and the gamma-subunit is catalytic. To learn more about intersubunit contacts within the hexadecamer and about the roles of individual subunits, we induced partial dissociation of the holoenzyme with low concentrations of urea. In the absence of Ca2+ the quaternary structure of phosphorylase kinase is very sensitive to urea over a narrow concentration range. Gel-filtration chromatography in the presence of progressively increasing concentrations of urea indicates that between 1.15 M- and 1.35 M-urea the delta-subunit dissociates, allowing extensive formation of complexes larger than the native enzyme that contain equivalent amounts of alpha-, beta- and gamma-subunits. As the urea concentration is increased to 2 M and 3 M, nearly all of the enzyme aggregates to the heavy species devoid of delta-subunit. Addition of Ca2+, which is known to block dissociation of the delta-subunit [Shenolikar, Cohen, Cohen, Nairn & Perry (1979) Eur. J. Biochem. 100, 329-337], also blocks aggregation of the enzyme induced by the low concentrations of urea. These results suggest that in native phosphorylase kinase the delta-subunit, in addition to activating the catalytic subunit and conferring upon it Ca2(+)-sensitivity, may also serve a structural role in preventing aggregation of the alpha-, beta- and gamma-subunits, thus limiting to four the number of alpha beta gamma delta protomers that associate under standard conditions. In gel-filtration chromatography with urea a protein peak containing equivalent amounts of alpha- and gamma-subunits is also observed, as is a peak containing only beta-subunits. Increasing concentrations of urea have a biphasic effect on the activity of the holoenzyme, being stimulatory up to 1 M and then inhibitory. The concentration-dependence of urea in the inhibitory phase parallels its ability to induce dissociation of the delta-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号