首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.

Background

Planarians are renowned for their regenerative capacity and are an attractive model for the study of adult stem cells and tissue regeneration. In an effort to better understand the molecular mechanisms underlying planarian regeneration, we performed a functional genomics screen aimed at identifying genes involved in this process in Schmidtea mediterranea.

Methods

We used microarrays to detect changes in gene expression in regenerating and non-regenerating tissues in planarians regenerating one side of the head and followed this with high-throughput screening by in situ hybridization and RNAi to characterize the expression patterns and function of the differentially expressed genes.

Results

Along with five previously characterized genes (Smed-cycD, Smed-morf41/mrg-1, Smed-pdss2/dlp1, Smed-slbp, and Smed-tph), we identified 20 additional genes necessary for stem cell maintenance (Smed-sart3, Smed-smarcc-1, Smed-espl1, Smed-rrm2b-1, Smed-rrm2b-2, Smed-dkc1, Smed-emg1, Smed-lig1, Smed-prim2, Smed-mcm7, and a novel sequence) or general regenerative capability (Smed-rbap46/48-2, Smed-mcm2, Smed-ptbp1, and Smed-fen-1) or that caused tissue-specific defects upon knockdown (Smed-ddc, Smed-gas8, Smed-pgbd4, and Smed-b9d2). We also found that a homolog of the nuclear transport factor Importin-α plays a role in stem cell function and tissue patterning, suggesting that controlled nuclear import of proteins is important for regeneration.

Conclusions

Through this work, we described the roles of several previously uncharacterized genes in planarian regeneration and implicated nuclear import in this process. We have additionally created an online database to house our in situ and RNAi data to make it accessible to the planarian research community.
  相似文献   

2.
3.
The ants Formica aquilonia and F. lugubris which inhabit the entire forest zone of the North Palaearctic and are absent from the basins of the Yana, Indigirka, and Kolyma rivers were found in the coastal area of the Sea of Okhotsk. A possible climatic conditionality of their occurrence in the Northeast is considered based on the data on the biotopic distribution of ants, the temperature causation of their overwintering, and cold hardiness. On the Sea of Okhotsk coast, these ants overwinter at a depth of 40–200 cm in the soil. During winter, the minimum soil temperature at a depth of 40 cm under the anthill was ?5°C. The supercooling temperature of F. aquilonia was not lower than ?20.2 ± 0.5°C, that of F. lugubris, not lower than ?19.6 ± 0.4°C. Half of F. aquilonia individuals did not survive the daily exposure at ?13°C, F. lugubris, at ?16°C. These two cold-resistant species could inhabit some biotopes of the Kolyma River basin, similar to F. exsecta, F. lemani, and F. sanguinea, but they are absent there for some reasons that are not related to the temperature. A similar cold hardiness is characteristic of F. aquilonia in Estonia (Maavara, 1971, 1985), where it represents a side effect of diapause, since excessive cold hardiness has no adaptive significance for insects overwintering in the non-freezing soils of Estonia. Colonization of Siberia by ant species turned out to be possible only due to the existing cold hardiness, i.e. preadaptation to low temperature. On the Sea of Okhotsk coast, cold hardiness of the ants is non-adaptive due to the relatively mild conditions during winter.  相似文献   

4.
Regeneration and negative phototaxis were studied in planarians Polycelis tenuis, in which the anterior body end is fringed with many eyes. Comparative data for the same indices are given for binocular planarians Girardia tigrina. Multiple eyes regenerated gradually with a decrease in the rate of regeneration and independently from the rate of restoration of the anterior body end, where they are located. Negative phototaxis was restored independently from the total amount of regenerated eyes. It was unstable in both planarian species.  相似文献   

5.
The effects of natural methylmercury compounds on regeneration of photoreceptor organs were studied in three freshwater planarians: Polycelis tenuis, Dugesia lugubris, and D. tigrina. Accumulation of methyl mercury in the planarian body suppressed regeneration of P. tenuis with numerous photoreceptor organs to a greater extent than in two other planarians that have only two eyes. High methyl mercury concentrations inhibited the restoration of photoreceptor organs in asexual and sexual D. tigrina races  相似文献   

6.
The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.  相似文献   

7.

Background

Myocardium regeneration in adult mammals is very limited, but has enormous therapeutic potentials. However, we are far from complete understanding the cellular and molecular mechanisms by which heart tissue can regenerate. The full functional ability of amphibians to regenerate makes them powerful animal models for elucidating how damaged mature organs are naturally reconstituted in an adult organism. Like other amphibians, such as newts and axolotls, adult Xenopus displays high regenerative capacity such as retina. So far, whether the adult frog heart processes regenerative capacity after injury has not been well delineated.

Results

We examined the regeneration of adult cardiac tissues of Xenopus tropicalis after resection of heart apex. We showed, for the first time, that the adult X. tropicalis heart can regenerate perfectly in a nearly scar-free manner approximately 30 days after injury via apical resection. We observed that the injured heart was sealed through coagulation immediately after resection, which was followed by transient fibrous tissue production. Finally, the amputated area was regenerated by cardiomyocytes. During the regeneration process, the cardiomyocytes in the border area of the myocardium adjacent to the wound exhibited high proliferation after injury, thus contribute the newly formed heart tissue.

Conclusions

Establishing a cardiac regeneration model in adult X. tropicalis provides a powerful tool for recapitulating a perfect regeneration phenomenon and elucidating the underlying molecular mechanisms of cardiac regeneration in an adult heart, and findings from this model may be applicable in mammals.
  相似文献   

8.
The details of the morphological organization of the body musculature in the planarians Girardia tigrina and Polycelis tenuis were investigated by histochemical staining of actin filaments with fluorescently labeled fluorescent. The whole mount preparations and frozen tissue sections of planarians were analyzed by fluorescent and confocal laser scanning microscopy. The results indicate that the muscle system is well differentiated in both planarian species and is represented by the somatic musculature of the body wall, the musculature of the digestive tract, and the musculature of the reproductive system organs in P. tenuis, which reproduces sexually. The differences and similarities between the two species in the morphological characters of the musculature, which are the size and density of myofibrils in different muscle layers, were described. The results present the basis for further studies on the regulation of muscle function in planarians.  相似文献   

9.
10.
Developmental deficiency of somatic embryos and regeneration to plantlets, especially in the case of transformation, are major problems of somatic embryo regeneration in alfalfa. One of the ways to overcome these problems is the use of natural plant regulators and nutrients in the culture medium of somatic embryos. For investigating the influence of Cuscuta campestris extract on the efficiency of plant regeneration and transformation, chimeric tissue type plasminogen activator was transferred to explants using Agrobacterium tumefaciens, and transgenic plants were recovered using medium supplemented with different concentration of the extract. Transgenic plants were analyzed by PCR and RT-PCR. Somatic embryos of Medicago sativa L. developed into plantlets at high frequency level (52 %) in the maturation medium supplemented with 50 mg 1?1 C. campestris extract as compared to the medium without extract (26 %). Transformation efficiency was 29.3 and 15.2 % for medium supplemented with dodder extract and without the extract, respectively. HPLC and GC/MS analysis of the extract indicated high level of ABA and some compounds such as Phytol, which can affect the somatic embryo maturation. The antibacterial assay showed that the extract was effective against some strains of A. tumefaciens. These results have provided a scientific basis for using of C. campestris extract as a good natural source of antimicrobial agents and plant growth regulator as well, that can be used in tissue culture of transgenic plants.  相似文献   

11.
Endophytic actinobacteria that lived in any associations with plant tissues represented a rather unexplored area of actinobacteria compared with soils. Gynura cusimbua was a kind of medicinal plant which had prevention effects for high blood pressure, coronary heart disease, Alzheimer’s disease, atherosclerosis, etc. Endophytic actinobacteria of G. cusimbua might produce some secondary metabolites which had the same function as their host. Stem samples of G. cusimbua collected from Hainan Province were used to study their endophytic actinobacteria to find some new compounds. In order to avoid vast proportions of the host plant DNA in the metagenomic library, the strategies of enrichment of the microorganism cells after tissue digestion and exclusion of 16S rRNA gene derived from the plastid by digested with PvuII were used. Two sets of actinobacteria specific primers were used for targeting endophytic actinobacteria from metagenomic library. 63 positive clones of actinobacteria were selected for sequencing and constructing the phylogenetic tree of 16S rRNA gene, and the 16S rRNA gene sequence of 59 strains among them had higher similar to the closest type strain and belonged to Microbacterium, Arthrobacter, Micrococcus, Curtobacterium, Okibacterium, Quadrisphaera and Kineococcus, respectively. Others were in low similarity and belonged to unclassified Micrococcineae, unclassified Intrasporangiaceae and unclassified Microbacteriaceae.  相似文献   

12.
13.
The effect of muscle tissue alloplasty and He-Ne laser radiation on the skeletal muscle regeneration and thymus function was studied. Allogenic muscle tissue was implanted from an adult rat. Without laser irradiation (series 1), initial enhancement of thymus recovery observed on day 7 after alloplasty (a characteristic stress response to operation) was followed by gradual destructive changes in the thymus tissue. On day 30 after alloplasty, connective tissue developed in the implantation area in muscle regenerates, and the muscle tissue accounted for 64 ± 2%. Implantation of unirradiated allografts into the muscles of recipient rats preirradiated with a He-Ne laser (series 2) resulted in a nearly complete destruction of the thymus and suppression of its function; the mitotic index of thymocytes was low. These changes were observed throughout the experiment starting immediately after the operation. In this case, the allogenic transplant retained the ability to develop: the 30-day repairing muscles consisted of 71 ± 2% of muscle tissue. When an allograft preirradiated with a He-Ne laser was implanted into unirradiated rats (series 3), thymus destruction at the beginning of the postoperative period was much less significant than in series 2 but more pronounced than in series 1. Then, thymus recovered more rapidly, the allogenic transplant was resorbed, and the muscle tissue in the regenerates accounted for 62 ± 3%.  相似文献   

14.
The modulation of N-methyl-D-aspartate receptor (NMDAR) and l-arginine/nitric oxide (NO) pathway is a therapeutic strategy for treating depression and neurologic disorders that involves excitotoxicity. Literature data have reported that creatine exhibits antidepressant and neuroprotective effects, but the implication of NMDAR and l-arginine/nitric oxide (NO) pathway in these effects is not established. This study evaluated the influence of pharmacological agents that modulate NMDAR/l-arginine-NO pathway in the anti-immobility effect of creatine in the tail suspension test (TST) in mice. The NOx levels and cellular viability in hippocampal and cerebrocortical slices of creatine-treated mice were also evaluated. The anti-immobility effect of creatine (10 mg/kg, po) in the TST was abolished by NMDA (0.1 pmol/mouse, icv), d-serine (30 µg/mouse, icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, polyamine site NMDAR antagonist), l-arginine (750 mg/kg, ip, NO precursor), SNAP (25 μg/mouse, icv, NO donor), L-NAME (175 mg/kg, ip, non-selective NOS inhibitor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhibitor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor antagonist). The combined administration of sub-effective doses of creatine (0.01 mg/kg, po) and NMDAR antagonists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, ip) reduced immobility time in the TST. Creatine (10 mg/kg, po) increased cellular viability in hippocampal and cerebrocortical slices and enhanced hippocampal and cerebrocortical NO x levels, an effect potentiated by l-arginine or SNAP and abolished by 7-nitroindazole or L-NAME. In conclusion, the anti-immobility effect of creatine in the TST involves NMDAR inhibition and enhancement of NO levels accompanied by an increase in neural viability.  相似文献   

15.
16.
Mollugo nudicaulis Lam., commonly known as John’s folly or naked-stem carpetweed, is an ephemeral species of tropical regions. The plant is ideal to study the eco-physiological adaptations of C3–C4 intermediate plants. In the present report, in vitro growth profiling of the plant and comparative leaf anatomy under in vitro and ex vitro conditions were studied. In vitro propagation of the plant was carried out on Murashige and Skoog (MS) basal medium augmented with additives and solidified with 0.8% (w/v) agar-agar or 0.16% (w/v) Phytagel?. The concentration of plant growth regulators (PGRs) in the basal medium was optimized for callus induction, callus proliferation, shoot regeneration, and in vitro rooting. The optimum callus induction was obtained from M. nudicaulis seedling hypocotyls. The highest regeneration induction of about 88% or nearly 41 shoots with about 142 leaves per culture vessel was observed from friable callus on MS basal medium solidified with Phytagel? and containing 4.44 μM 6-benzylaminopurine, 4.65 μM kinetin, 2.69 μM naphthaleneacetic acid, and 0.91 μM thidiazuron. In leaf anatomy, differences related to photosynthetic tissue organization were observed in leaves of in vitro and ex vitro plants, which indicated that changes in the environment affected the anatomy of subsequent leaves in plants. This is the first report of an efficient micropropagation protocol for M. nudicaulis, using an indirect organogenesis method. Efforts were made to optimize the concentrations of various PGRs and organic compounds for in vitro growth of regenerated shoots.  相似文献   

17.
Mycoleptodonoides aitchisonii (Berk.) Maas Geest. is a culinary mushroom that is recognized as both a nutritious food and an excellent source of bioactive compounds. The purpose of this study was to investigate the antioxidant and antidiabetic properties of M. aitchisonii (MA) both in vitro and in vivo. Total oxyradical scavenging capacity (TOSC) assays revealed that fruit-body extracts had higher antioxidant capacity than mycelial extracts, 0.9-fold higher as measured by peroxynitrite (PN) scavenging assay, 3.7-fold higher as measured by peroxyl radical (PR) scavenging assay, and 1.6-fold as measured by hydroxyl radical (HR) scavenging assay, respectively. The assay of Akt phosphorylation, which is inhibited by Interleukin 6 (IL-6) in the signal transduction pathway for diabetes, was employed to evaluate the antidiabetic activity. Fruit-body extracts significantly increased Akt phosphorylation according to the fruit-body extract concentration, with a maximum increment of 77% at a concentration of 100 μg/mL compared to 51.4% decrement caused by IL-6, but there was no effect of mycelial extracts. Treatment with 5% MA fruit-body powder and streptozotocin (STZ) decreased the blood sugar level to 233.8 mg/dL in diabetic mice compared to 333.8 mg/dL after treatment with STZ alone. Additionally, MA treatment lowered total cholesterol (TC), triglyceride (TG), and LDL-cholesterol levels, while it increased the HDL-cholesterol level. All these findings indicate that fruit-body of M. aitchisonii has potential utility in preventing various diseases such as disorders of sugar and lipid metabolism.  相似文献   

18.
In the present study, six monoterpenes [(?)-citronellal, p-cymene, (?)-menthone, α-pinene, α-terpinene, and (?)-terpinen-4-ol] and two phenylpropenes [trans-cinnamaldehyde and eugenol] were evaluated for their contact and fumigant toxicities against Sitophilus oryzae adults. The effects of these compounds on the mortality of S. oryzae adults in stored wheat and their inhibitory effects on acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) were examined. The tested compounds showed varying degrees of contact toxicity, with trans-cinnamaldehyde (LC50 = 0.01 mg/cm2) being the most potent compound, followed by (?)-menthone (LC50 = 0.013 mg/cm2) and eugenol (LC50 = 0.015 mg/cm2). In a fumigant toxicity assay, the monoterpenes α-terpinene, p-cymene, and (?)-menthone showed the highest toxicities (LC50 = 50.79, 52.37, and 54.08 μl/L air, respectively). Trans-cinnamaldehyde, (?)-citronellal, and eugenol were the least toxic (LC50 > 100 μl/L air). In general, the oxygenated compounds exhibited high contact toxicities while the hydrocarbon compounds exhibited high fumigant toxicities. When tested for their insecticidal activities against S. oryzae in stored wheat, trans-cinnamaldehyde was found to be the most potent compound, with 73.9% mortality at an application rate of 0.5 g/kg and complete mortality (100%) at 1 and 5 g/kg after 1 week of treatment. All of the tested compounds showed AChE inhibition, although (?)-citronellal and trans-cinnamaldehyde presented the strongest enzyme inhibition, with IC50 values of 18.40 and 18.93 mM, respectively. On the other hand, (?)-terpinene-4-ol exhibited the highest inhibition of ATPases, followed by α-pinene and α-terpinene.  相似文献   

19.

Key message

Candidate genes associated with in vitro regeneration were identified in cucumber.

Abstract

The ability to regenerate shoots or whole plants from differentiated plant tissues is essential for plant transformation. In cucumber (Cucumis sativus L.), regeneration ability varies considerably across accessions, but the genetic mechanism has not yet been demonstrated. In the present study, 148 recombinant inbred lines and a core collection were examined to identify candidate genes involved in cucumber regeneration. Four QTL for cotyledon regeneration that explained 9.7–16.6% of the phenotypic variation in regeneration were identified on cucumber chromosomes 1, 3, and 6. The loci Fcrms1.1 and Fcrms+1.1 were consistently detected in the same genetic interval on two regeneration media. A genome-wide association study revealed 18 SNPs (??log(p)?>?5) significantly associated with cotyledon regeneration. Three candidate genes in this region were identified. RT-PCR analyses revealed that Csa1G642540 was significantly more highly expressed in genotypes with high cotyledon regeneration rates than in those with low regeneration. The Csa1G642540 CDS driven by its native promoter was transformed into cucumber line 9110Gt; molecular analyses showed that the T-DNA had integrated into the genomes of 8.6% of regenerated plantlets. The seeds from T0 plants expressing Csa1G642540 were tested for regeneration from cotyledon explants, and the segregate ratio in regeneration frequency is 3:1. The AT3G44110.1, the homologue gene of Csa1G642540 in Arabidopsis, has been reported as PM H+-ATPase activity regulation, integrating flowering signals and enlarging meristem function. These results demonstrate that Csa1G642540 might play an important role in regeneration in cucumber and could serve as a selectable marker for regeneration from cotyledons.
  相似文献   

20.
The paper’s objective was to estimate weekly Hg intake from fish meals based on intervention research. Total Hg (THg) concentrations in blood and hair samples collected from men (n = 67) from an intervention study as well as muscular tissues of fresh and after heat-treating fish were determined using the thermal decomposition amalgamation atomic absorption spectrometry method (TDA-AAS) using direct mercury analyzer (DMA-80). The mean of the estimated weekly intake (EWI) was estimated at 0.62 μg/kg bw/week in the range 0.36–0.96 μg/kg body weight (bw) /week through the consumption of 4 edible marine fish species every day (for 10 days) by the participants from the intervention research in Lodz, Poland. The Hg intake in the volunteers in our intervention study accounted for 38.6% of the provisional tolerable weekly intake (PTWI) (1.6 μg/kg bw, weekly) value. The average Hg concentration in the analyzed fish ranged from 0.018 ± 0.006 mg/kg wet weight (Gadus chalcogrammus) to 0.105 ± 0.015 mg/kg wet weight (Macruronus magellanicus). The results for the average consumers were within PTWI of methylmercury (MeHg). Moreover, the average concentration of Hg in the selected fish after heat treatment did not exceed the maximum permitted concentrations for MeHg (MPCs = 0.5 mg/kg wet weight) in food set by the European Commission Regulation (EC/1881/2006). Hence, the risk of adverse effects of MeHg for the participants is substantially low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号