首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients with inflammatory or neuropathic pain experience hypersensitivity to mechanical, thermal and/or chemical stimuli. Given the diverse etiologies and molecular mechanisms of these pain syndromes, an approach to developing successful therapies may be to target ion channels that contribute to the detection of thermal, mechanical and chemical stimuli and promote the sensitization and activation of nociceptors. Transient Receptor Potential (TRP) channels have emerged as a family of evolutionarily conserved ligand-gated ion channels that contribute to the detection of physical stimuli. Six TRPs (TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and TRPA1) have been shown to be expressed in primary afferent nociceptors, pain sensing neurons, where they act as transducers for thermal, chemical and mechanical stimuli. This short review focuses on their contribution to pain hypersensitivity associated with peripheral inflammatory and neuropathic pain states.  相似文献   

2.
Increased pain sensitivity (hyperalgesia) and persistent nociception following peripheral tissue injury depends both on an increase in the sensitivity of primary afferent nociceptors at the site of injury (peripheral sensitization), and on an increase in the excitability of neurons in the central nervous system (central sensitization). We will review evidence that central sensitization, and the persistent nociception it leads to, are dependent on an action of glutamate and aspartate at excitatory amino acid (EAA) receptors. Additional evidence will be presented implicating a role of various intracellular second messengers that are coupled to EAA receptors (nitric oxide, arachidonic acid, and protein kinase C) to central sensitization and persistent nociception following tissue injury. Finally, we will examine the evidence for a contribution of molecular events, including noxious stimulus-induced expression of immediate-early genes such as c-fos to persistent nociception.  相似文献   

3.
Clinical presentation of osteoarthritis (OA) is dominated by pain during joint use and at rest. OA pain is caused by aberrant functioning of a pathologically altered nervous system with key mechanistic drivers from peripheral nerves and central pain pathways. This review focuses on symptomatic pain therapy exemplified by molecular targets that alter sensitization and hyperexcitability of the nervous system, for example, opioids and cannabinoids. We highlight opportunities for targeting inflammatory mediators and their key receptors (for example, prostanoids, kinins, cytokines and chemokines), ion channels (for example, NaV1.8, NaV1.7 and CaV2.2) and neurotrophins (for example, nerve growth factor), noting evidence that relates to their participation in OA etiology and treatment. Future neurological treatments of pain appear optimistic but will require the systematic evaluation of emerging opportunities.  相似文献   

4.
Nerve growth factor (NGF) is the founding member of the neurotrophins family of proteins. It was discovered more than half a century ago through its ability to promote sensory and sympathetic neuronal survival and axonal growth during the development of the peripheral nervous system, and is the paradigmatic target‐derived neurotrophic factor on which the neurotrophic hypothesis is based. Since that time, NGF has also been shown to play a key role in the generation of acute and chronic pain and in hyperalgesia in diverse pain states. NGF is expressed at high levels in damaged or inflamed tissues and facilitates pain transmission by nociceptive neurons through a variety of mechanisms. Genetic mutations in NGF or its tyrosine kinase receptor TrkA, lead to a congenital insensitivity or a decreased ability of humans to perceive pain. The hereditary sensory autonomic neuropathies (HSANs) encompass a spectrum of neuropathies that affect one's ability to perceive sensation. HSAN type IV and HSAN type V are caused by mutations in TrkA and NGF respectively. This review will focus firstly on the biology of NGF and its role in pain modulation. We will review neuropathies and clinical presentations that result from the disruption of NGF signalling in HSAN type IV and HSAN type V and review current advances in developing anti‐NGF therapy for the clinical management of pain.  相似文献   

5.
On the basis of anatomical and electrophysiological studies, this review summarizes first, the data dealing with the transmission of joint inputs in the central nervous system of normal animals at the spinal and supraspinal levels. It appears that in these conditions neuronal responses to mechanical noxious stimuli of the joints are relatively few and (or) weak. Second, in sharp contrast, the studies performed in polyarthritic rats have emphasized the profound changes in the activities (spontaneous firing and responsiveness) of the somatosensory neurones at various levels of the central nervous system (CNS), including the thalamus and primary somatosensory cortex; many were spontaneously active and a majority of them could be maximally activated by gentle mechanical stimuli applied to the inflamed joints. Although the change in the sensitivity of the peripheral mechanoreceptors has a major role in the modifications described in the CNS, additional observations have suggested a complex interaction between peripheral and central processes. On the basis of the recent data obtained in poly- and mono-arthritic animals; the following phenomena have been successively considered: the segmental and hetero-segmental "cross-talk" and their possible relationship with referred pain; the involvement of "new" neuronal populations as a possible basis of a selective system for joint pain; and the possible involvement of changes in the various control systems that normally modulate the nociceptive inputs at different levels of the CNS.  相似文献   

6.
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.  相似文献   

7.
Changes in neuronal excitability due to increase in excitatory transmitters and/or removal of local inhibition underlie central neuron sensitization and altered responsiveness related to painful sensory disorders. To distinguish the contribution of each of the two mechanisms, they have been mimicked separately in intact rats, by iontophoretically applying excitatory (NMDA) and disinhibitory (the glycine antagonist strychnine) substances during dorsal horn neuron recording. Wide dynamic range (WDR) neurons were extracellularly recorded at the L5-L6 lumbar level in anesthetized and paralyzed rats and an analysis was made, before and during the substance application, of the characteristics of the response to noxious stimuli applied to areas supplied by the ipsilateral sciatic nerve and the contralateral sciatic and saphenous nerves ("inappropriate" areas). The results show that the neuronal response properties were modified differently during the NMDA-induced hyperexcitability and strychnine-induced release of inhibition. Both manipulations brought about the unmasking of responses to previously ineffective, noxious stimuli applied to the contralateral sciatic and saphenous nerve areas, and the enhancement of the responses to noxious stimulation of the ipsilateral sciatic nerve area. However, it was only during the increased excitation induced by NMDA that the neurons exhibited hyperresponsiveness, with long-lasting afterdischarge, to noxious stimulation of the ipsi- and contralateral areas. Such response features resemble those described in sensitized neurons in neuropathic rats and associated with behavioral signs of hyperalgesia. This suggests, by inference, a crucial contribution of the NMDA-induced increased excitability to the expression of neuronal sensitization related to this painful sensory disorder.  相似文献   

8.
Changes in neuronal excitability due to increase in excitatory transmitters and/or removal of local inhibition underlie central neuron sensitization and altered responsiveness related to painful sensory disorders. To distinguish the contribution of each of the two mechanisms, they have been mimicked separately in intact rats, by iontophoretically applying excitatory (NMDA) and disinhibitory (the glycine antagonist strychnine) substances during dorsal horn neuron recording. Wide dynamic range (WDR) neurons were extracellularly recorded at the L5-L6 lumbar level in anesthetized and paralyzed rats and an analysis was made, before and during the substance application, of the characteristics of the response to noxious stimuli applied to areas supplied by the ipsilateral sciatic nerve and the contralateral sciatic and saphenous nerves ("inappropriate" areas). The results show that the neuronal response properties were modified differently during the NMDA-induced hyperexcitability and strychnine-induced release of inhibition. Both manipulations brought about the unmasking of responses to previously ineffective, noxious stimuli applied to the contralateral sciatic and saphenous nerve areas, and the enhancement of the responses to noxious stimulation of the ipsilateral sciatic nerve area. However, it was only during the increased excitation induced by NMDA that the neurons exhibited hyperresponsiveness, with long-lasting afterdischarge, to noxious stimulation of the ipsi- and contralateral areas. Such response features resemble those described in sensitized neurons in neuropathic rats and associated with behavioral signs of hyperalgesia. This suggests, by inference, a crucial contribution of the NMDA-induced increased excitability to the expression of neuronal sensitization related to this painful sensory disorder.  相似文献   

9.

Enhanced sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful are hallmark sensory perturbations associated with chronic pain. It is now appreciated that ATP, through its actions as an excitatory neurotransmitter, plays a prominent role in the initiation and maintenance of chronic pain states. Mechanistically, the ability of ATP to drive nociceptive sensitivity is mediated through direct interactions at neuronal P2X3 and P2X2/3 receptors. Extracellular ATP also activates P2X4, P2X7, and several P2Y receptors on glial cells within the spinal cord, which leads to a heightened state of neural-glial cell interaction in ongoing pain states. Following the molecular identification of the P2 receptor superfamilies, selective small molecule antagonists for several P2 receptor subtypes were identified, which have been useful for investigating the role of specific P2X receptors in preclinical chronic pain models. More recently, several P2X receptor antagonists have advanced into clinical trials for inflammation and pain. The development of orally bioavailable blockers for ion channels, including the P2X receptors, has been traditionally difficult due to the necessity of combining requirements for target potency and selectivity with suitable absorption distribution, metabolism, and elimination properties. Recent studies on the physicochemical properties of marketed orally bioavailable drugs, have identified several parameters that appear critical for increasing the probability of achieving suitable bioavailability, central nervous system exposure, and acceptable safety necessary for clinical efficacy. This review provides an overview of the antinociceptive pharmacology of P2X receptor antagonists and the chemical diversity and drug-like properties for emerging antagonists of P2X3, P2X2/3, P2X4, and P2X7 receptors.

  相似文献   

10.
Enhanced sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful are hallmark sensory perturbations associated with chronic pain. It is now appreciated that ATP, through its actions as an excitatory neurotransmitter, plays a prominent role in the initiation and maintenance of chronic pain states. Mechanistically, the ability of ATP to drive nociceptive sensitivity is mediated through direct interactions at neuronal P2X3 and P2X2/3 receptors. Extracellular ATP also activates P2X4, P2X7, and several P2Y receptors on glial cells within the spinal cord, which leads to a heightened state of neural-glial cell interaction in ongoing pain states. Following the molecular identification of the P2 receptor superfamilies, selective small molecule antagonists for several P2 receptor subtypes were identified, which have been useful for investigating the role of specific P2X receptors in preclinical chronic pain models. More recently, several P2X receptor antagonists have advanced into clinical trials for inflammation and pain. The development of orally bioavailable blockers for ion channels, including the P2X receptors, has been traditionally difficult due to the necessity of combining requirements for target potency and selectivity with suitable absorption distribution, metabolism, and elimination properties. Recent studies on the physicochemical properties of marketed orally bioavailable drugs, have identified several parameters that appear critical for increasing the probability of achieving suitable bioavailability, central nervous system exposure, and acceptable safety necessary for clinical efficacy. This review provides an overview of the antinociceptive pharmacology of P2X receptor antagonists and the chemical diversity and drug-like properties for emerging antagonists of P2X3, P2X2/3, P2X4, and P2X7 receptors.  相似文献   

11.
Pain, due to mechanical stimuli, is a normal, indeed healthy, response of animals to potential or actual damage to tissues. Mammals in general, and humans in particular, have evolved a highly sophisticated system of pain perception, which is characterized in humans by complementary but distinct neural processing of the intensity and location of a noxious stimulus, and a motivational/emotional or affective response to the stimulus. The peripheral and central neurons that comprise this system, which has been called the 'neuromatrix', dynamically (temporally) respond and adapt to noxious biomechanical stimuli. However, phenotypic variability of the neuromatrix can be large, which can result in a host of musculoskeletal conditions that are characterized by altered pain perception, which can and often does alter the course of the condition. This neural plasticity has been well recognized in the central nervous system, but it has only more recently become known that peripheral nociceptors also adapt to their altered extracellular matrix environment. This work reviews the biomechanics of pain focusing on the relevant stimulus that initiates responses by nociceptors to the cognitive perception of pain.  相似文献   

12.
Nitric oxide (NO) can induce acute pain in humans and plays an important role in pain sensitization caused by inflammation and injury in animal models. There is evidence that NO acts both in the central nervous system via a cyclic GMP pathway and in the periphery on sensory neurons through unknown mechanisms. It has recently been suggested that TRPV1 and TRPA1, two polymodal ion channels that sense noxious stimuli impinging on peripheral nociceptors, are activated by NO in heterologous systems. Here, we investigate the relevance of this activation. We demonstrate that NO donors directly activate TRPV1 and TRPA1 in isolated inside-out patch recordings. Cultured primary sensory neurons display both TRPV1- and TRPA1-dependent responses to NO donors. BH4, an essential co-factor for NO production, causes activation of a subset of DRG neurons as assayed by calcium imaging, and this activation is at least partly dependent on nitric oxide synthase activity. We show that BH4-induced calcium influx is ablated in DRG neurons from TRPA1/TRPV1 double knockout mice, suggesting that production of endogenous levels of NO can activate these ion channels. In behavioral assays, peripheral NO-induced nociception is compromised when TRPV1 and TRPA1 are both ablated. These results provide genetic evidence that the peripheral nociceptive action of NO is mediated by both TRPV1 and TRPA1.  相似文献   

13.
The peripheral nociceptor is an important target of pain therapy because many pathological conditions such as inflammation excite and sensitize peripheral nociceptors. Numerous ion channels and receptors for inflammatory mediators were identified in nociceptors that are involved in neuronal excitation and sensitization, and new targets, beyond prostaglandins and cytokines, emerged for pain therapy. This review addresses mechanisms of nociception and focuses on molecules that are currently favored as new targets in drug development or that are already targeted by new compounds at the stage of clinical trials - namely the transient receptor potential V1 receptor, nerve growth factor, and voltage-gated sodium channels - or both.  相似文献   

14.
Neurotrophin family are traditionally recognized for their nerve growth promoting function and are recently identified as crucial factors in regulating neuronal activity in the central and peripheral nervous systems. The family members including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are reported to have distinct roles in the development and maintenance of sensory phenotypes in normal states and in the modulation of sensory activity in disease. This paper highlights receptor tyrosine kinase (Trk) -mediated signal transduction by which neurotrophins regulate neuronal activity in the visceral sensory reflex pathways with emphasis on the distinct roles of NGF and BDNF signaling in physiologic and pathophysiological processes. Viscero-visceral cross-organ sensitization exists widely in human diseases. The role of neurotrophins in mediating neural cross talk and interaction in primary afferent neurons in the dorsal root ganglia (DRG) and neurotrophin signal transduction in the context of cross-organ sensitization are also discussed.  相似文献   

15.
大鼠杏仁核簇与痛觉调制的关系   总被引:2,自引:0,他引:2  
目的:研究伤害性刺激对大鼠杏仁核簇中各亚核痛反应神经元电活动的影响。方法:用串电脉冲刺激坐骨神经作为伤害性刺激,用玻璃微电极引导神经元放电。结果:杏仁核簇中多个亚核均存在痛反应神经元。伤害性刺激使痛兴奋神经元(PEN)诱发放电频率增加;使痛抑制神经元(PIN)诱发放电频率降低,并出现放电频率极低现象;两类神经元电活动相互配合。腹腔注射吗啡(10mg/kg)可以对抗伤害性刺激对痛反应神经元的作用。结论:杏仁核簇中的部分亚核在感受、整合和传递痛觉信息方面起一定作用,是中枢神经系统控制和处理痛觉信息的一个组成部分。  相似文献   

16.
Woolf CJ 《Life sciences》2004,74(21):2605-2610
Peripheral neuropathic pain, that clinical pain syndrome associated with lesions to the peripheral nervous system, is characterized by positive and negative symptoms. Positive symptoms include spontaneous pain, paresthesia and dysthesia, as well as a pain evoked by normally innocuous stimuli (allodynia) and an exaggerated or prolonged pain to noxious stimuli (hyperalgesia/hyperpathia). The negative symptoms essentially reflect loss of sensation due to axon/neuron loss, the positive symptoms reflect abnormal excitability of the nervous system. Diverse disease conditions can result in neuropathic pain but the disease diagnosis by itself is not helpful in selecting the optimal pain therapy. Identification of the neurobiological mechanisms responsible for neuropathic pain is leading to a mechanism-based approach to this condition, which offers the possibility of greater diagnostic sensitivity and a more rational basis for therapy. We are beginning to move from an empirical symptom control approach to the treatment of pain to one targeting the specific mechanisms responsible. This review highlights some of the mechanisms underlying neuropathic pain and the novel targets they reveal for future putative analgesics.  相似文献   

17.
MAPK activation in nociceptive neurons and pain hypersensitivity   总被引:22,自引:0,他引:22  
Obata K  Noguchi K 《Life sciences》2004,74(21):2643-2653
  相似文献   

18.
Signaling pathways in sensitization: toward a nociceptor cell biology   总被引:3,自引:0,他引:3  
Hucho T  Levine JD 《Neuron》2007,55(3):365-376
The electrophysiological properties of peripheral neurons activated by noxious stimuli, the primary afferent nociceptors, have been investigated intensively, and our knowledge about the molecular basis of transducers for noxious stimuli has increased greatly. In contrast, understanding of the intracellular signaling mechanisms regulating nociceptor sensitization downstream of ligand binding to the receptors is still at a relatively nascent stage. After outlining the initiated signaling cascades, we discuss the emerging plasticity within these cascades and the importance of subcellular compartmentalization. In addition, the recently realized importance of functional interactions with the extracellular matrix, cytoskeleton, intracellular organelles such as mitochondria, and sex hormones will be introduced. This burgeoning literature establishes new cellular features crucial for the function of nociceptive neurons and argues that additional focus should be placed on understanding the complex integration of cellular events that make up the "cell biology of pain."  相似文献   

19.
Transduction and transmission properties of primary nociceptive afferents.   总被引:3,自引:0,他引:3  
The prototypical primary nociceptive afferent is the polymodal C-fiber nociceptor, which responds to noxious thermal, mechanical, and chemical stimuli. C-fiber nociceptors are peripheral terminals of small neurons in the dorsal root ganglia (DRG). DRG neurons must therefore supply their peripheral terminals with the molecular machinery for the encoding of noxious stimuli into trains of action potentials. The following phenomena are known for this encoding process in vivo: 1) adaptation: for a constant stimulus intensity the action potential discharge decreases slowly within 2-3 seconds, 2) fatigue: recovery from adaptation may take ten minutes or more, 3) sensitization: preceding tissue damage enhances the response, particularly to heat stimuli. Recent studies in vitro have provided important clues about the molecular mechanisms underlying these phenomena. Several membrane receptors and channels are specifically expressed in small nociceptive neurons, such as vanilloid receptors (VR1), purinergic receptors (P2X3), acid sensing ion channels (ASIC), and TTX-resistant Na-channels. In the near future, we may therefore expect major advances in our understanding of the transduction of noxious stimuli into generator potentials and transformation into trains of action potentials. Along the axon that leads from the innervated tissue to the spinal cord, primary nociceptive afferents have a limited capacity to transmit high impulse rates, suggesting a different composition of voltage-gated channels than in other primary afferents (low-threshold mechanoreceptors and thermoreceptors). Finally, the DRG neuron also supplies its central terminals with the molecular machinery for synaptic transmission and its presynaptic modulation. Progress in understanding the cellular mechanisms at both ends of the primary nociceptive neuron promises to lead to new analgesic treatment modalities for both acute and chronic pain.  相似文献   

20.
Pain inhibition can be induced by immune-derived opioids interacting with opioid receptors on peripheral sensory nerves. These receptors are up-regulated in inflammation (1). Opioid peptides are synthesised in circulating immune cells which migrate to injured tissue. This is orchestrated by selectins and other adhesion molecules located on immunocytes and on vascular endothelium (2). In response to releasing stimuli the opioids are secreted, activate peripheral opioid receptors and produce analgesia by inhibiting the excitability of sensory nerves and/or the release of excitatory neuropeptides. These effects occur in the periphery and are devoid of central side-effects such as respiratory depression, sedation, dysphoria or dependence. Targeting of immune cells containing opioids to injured tissues is a novel concept of pain control and opens potential new therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号