首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of freezing treatment on plasma membrane (PM) H+-ATPase was investigated using plasma membrane vesicles isolated from calluses from Chorispora bungeana Fisch. & C.A. Mey. by the discontinuous sucrose gradient centrifugation. Freezing treatment (−4 °C) for 5 d resulted in significant increases in the ATPase activity and the activity of p-nitrophenyl phosphate (PNPP) hydrolysis, decreases in the Km for ATP hydrolysis and PNPP hydrolysis, and the shift of optimal pH from 6.5 to 7.0. Also, the activity PNPP hydrolysis was less sensitive to vanadate after freezing treatment compared to control, while the inhibition of ATP hydrolysis by hydroxylamine was more sensitive. In addition, freezing treatment also decreased the activation effects of trypsin on PNPP hydrolysis, but increased the activation effects of lysophosphatidylcholine on ATP hydrolysis. Taken together, these results suggested that PM H+-ATPase might play an important role during adaptation to freezing and enhancing the frost hardness in C. bungeana.  相似文献   

2.
The influence of drought stress on the ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activity by plasma membrane H+-ATPase was investigated using purified plasma membrane vesicles from wheat leaves by two-phase partitioning. Drought stress increased the ATPase activity, and the optimal pH was shifted from 6.5 to about 7.0. Drought stress also stimulated the PNPP hydrolysis rate. The Km for PNPP hydrolysis was moved from 4.49 ± 0.33 mM to 3.64 ± 0.12 mM. In addition, the PNPP hydrolysis was more sensitive to vanadate under drought compared to the control. However, the inhibitory effect of hydroxylamine on the ATPase was not changed by the present drought stress. In addtion, drought stress also decreased the trypsin activation of PNPP hydrolysis by PM H+-ATPase. These results suggested that drought stress altered the catalytic mechanism of the plasma membrane H+-ATPase, and the stimulation of its activity by drought stress was mainly due to increase of the catalytic activity of its phosphatase domain. It is also suggested that drought stress might alter the structure or property of the C-terminal end of PM H+-ATPase, therefore increasing the catalytic activity of the phosphatase domain.  相似文献   

3.
The redox system and H+-transport activities in the plasma membranes from two ecotypes of reed (Phragmites communis Trin.), named swamp reed (SR) and dune reed (DR) according to their habitats, were investigated. Compared to the SR, the DR possessed the very high rates of NADH oxidation and Fe(CN)6 3– and EDTA-Fe3+ reduction when NADH was taken as the electron donor. As NADPH was an electron donor, the rate of NADPH oxidation was also significantly higher in the DR than that in the SR. In addition, the H+-transport activity in the plasma membranes was also significantly higher in the DR than in the SR.  相似文献   

4.
The H+-ATPase activities of root and leaf plasma membranes from tobacco (Nicotiana tabacum) have been characterized with respect to Vmax, Km for ATP, pH dependence and activation involving the C-terminal autoinhibitory domain. With root plasma membranes, addition of lysophosphatidylcholine (lyso-PC) resulted in the expected increase in Vmax, a decrease in Km(ATP), and a shift in pH optimum to a more alkaline pH, typical for activation via the C-terminal inhibitory domain. With leaf plasma membranes, however, Km(ATP) was relatively low and the pH optimum was around pH 7.0 before the addition of lyso-PC and did not change upon addition of the activator, although Vmax increased twofold. Similar results were obtained with the in vivo activator fusicoccin. The results obtained with the leaf plasma membranes show that Vmax may be regulated independently of Km(ATP) and pH optimum, and suggest the presence of at least two regulatory sites within the C-terminal autoinhibitory domain of the H+-ATPase.  相似文献   

5.
The stimulation of the plasma membrane (PM) H+-ATPase by boric acid was studied on a microsomal fraction (MF) obtained from ungerminated, boron-dependent pollen grains of Lilium longiflorum Thunb. which usually need boron for germination and tube growth. ATP hydrolysis and H+ transport activity increased by 14 and 18%, respectively, after addition of 2-4 mM boric acid. The optimum of boron stimulation was at pH 6.5-8.5 for ATP hydrolysis and at pH 6.5-7.5 for H+ transport. No boron stimulation was detected when vanadate was added to the MF, whereas an increase of 10-20% in ATP hydrolysis and H+ transport was still measured in the presence of inhibitors specific for V -type ATPase (nitrate and bafilomycin) and F-type ATPase (azide), respectively. A vanadate-sensitive increase in ATP hydrolysis activity was also observed in partially permeabilized vesicles (0.001%[w/v] Triton X-100) suggesting a direct interaction between borate and the PM H+-ATPase rather than a weak acid-induced stimulation. Additionally, we measured the effect of boron on membrane voltage (Vm) of ungerminated pollen grains and observed small hyperpolarizations in 48% of all experiments. Exposing pollen grains to a more acidic pH of 4 caused a depolarization, followed in some experiments by a repolarization (21%). In the presence of 2 mM boron such hyperpolarizations, perhaps caused by an enhanced activity of the H+-ATPase, were measured in 58% of all tested pollen grains. The effects of boron on Vm may be reduced by additional stimulation of a K+ inward current of opposite direction to the H+-ATPase. All experiments indicate that boron stimulates an electrogenic transport system in the plasma membrane which is sensitive to vanadate and has a pH optimum around 7, i.e. the plasma membrane H+-ATPase. A boron-increased PM H+-ATPase activity in turn may stimulate germination and growth of pollen tubes.  相似文献   

6.
不同生境两种生态型芦苇叶片质膜H~ -ATPase的比较(英文)   总被引:1,自引:0,他引:1  
利用两相法纯化质膜微囊,研究了分布于西北沙漠地区的两种生态型芦苇(Phragmites communis Trin.)(水生芦苇和重度盐化草甸芦苇,分别简称为水芦和盐芦)叶片质膜H -ATPase的部分性质。结果显示,与水芦相比,盐芦质膜H -ATPase的ATP水解活性升高,Km值由1.27 mmol/L降至0.30 mmol/L,但Vmax没有显著差异。并且该酶活性对温度的敏感性和pH谱型也发生了变化。以对硝基苯磷酸盐为底物,低浓度时盐芦的质膜H -ATPase水解活性高于水芦,高浓度时则没有差异。Km在水芦和盐芦中分别为3.61 mmol/L和1.92 mmol/L,但Vmax在两种生态型中没有差异。钒酸盐抑制实验表明,两种生态型的质膜H -ATPase磷酸-酶区的催化性质不同。胰酶对质膜H -ATPase活性的活化谱型也存在差异,说明该酶C末端的结构或性质发生了变化。此外,与水芦相比,盐芦质膜H -ATPase的质子泵活性及与水解活性的耦联程度也升高了。以上结果说明,当芦苇从水生环境向盐渍环境过渡时,质膜H -ATPase的催化性质发生了变化,这些变化可能是由酶结构的修饰和不同的同工酶谱引起的。H -ATPase催化性质的变化可能是对盐渍生境的适应性反应。  相似文献   

7.
Plasma membrane (PM) vesicles of the leaves of two ecotypes of reed (Phragrnites communis Trin.), swamp reed (SR) and heavy salt meadow reed (HSMR) growing in the desert region of Northwest China, were purified by two-phase partitioning and the properties of their PM H^ -ATPases (EC 3.6.1.35) were compared. The specific activity of this enzyme was greater in HSMR than in SR and the Km lower (1.27mmol/L in SR and 0.30mmol/L in HSMR), and the Vmax of ATP hydrolysis activity showed no significant difference between the two ecotypes. The PM H^ -ATPase was more sensitive to denaturing temperatures in HSMR than in SR, and the pH profile also showed a slight difference, suggesting that the catalytic mechanism of this enzyme was different in HSMR compared with that in SR. The p-nitrophenyl phosphate (PNPP) hydrolysis activity of H^ -ATPase was higher in HSMR than in SR at low concentrations of PNPP, but showed no difference at high PNPP concentration. The Km for PNPP hydrolysis was 3.61mmol/L and 1.92mmol/L in SR and HSMR, respectively. And the Vmax of PNPP hydrolysis showed no significant difference in the two reed ecotypes. An experiment with the inhibitor vanadate showed that the catalytic mechanisms of the phosphatase domain of the ATPase were different in the two ecotypes. The data obtained following trypsin treatment showed a difference in the enzyme activity pattern, suggesting that there existed a possible change in the C-terminus of the ATPase, either in the structure or in the property or both of them. In addition, compared with SR, the ATP-dependent H^ pumping activity of ATPase and the coupling between proton transport and ATP hydrolysis in HSMR were increased. These results indicated that the properties of PM H^ -ATPase were changed in HSMR with compared to those in SR, which might include enzyme modifications and different isoforms expressed. The alterations of the properties of this enzyme might be an adaptive response to the habitat.  相似文献   

8.
This article deals with cell physiological aspects of the plasma membrane electrogenic proton (H+) pump and emphasizes the contribution of the giant algal cells of the Characeae in elucidating the mechanism of the pump. First, a history of the development of intracellular perfusion techniques in characean internodal cells is described, including preparation of tonoplast-free cells. Then, an outline of the hypothesis of the electrogenic H+ pump proposed by Kitasato is introduced, who prophesied the existence of an electric potential generated by an active H+ efflux. Subsequently, a history of finding ATP as the direct energy source of the electrogenic ion pump is presented. Quantitative agreement between the pump current and the ATP-dependent H+ efflux supports the notion that the ion carried by the electrogenic ion pump is H+. The role of the H+ pump in regulation of the cytosolic pH is discussed. Mechanisms of light-induced potential change through photosynthesis-controlled activation of the H+ pump are discussed in terms of changes in the levels of adenine nucleotides and in modulation of the Km value for the ATP of H+-ATPase. Recent progress in the molecular mechanism of the blue-light-induced activation of the H+-ATPase in guard cells is presented. However, there are cases where H+-ATPase activity is inhibited by blue light, indicating the flexibility of the control mechanisms of H+-ATPase activity. Finally, modulation of H+-pumping or H+-ATPase activities in response to environmental factors, such as anoxia, membrane excitation, osmotic and salt stresses, nutrient deficiencies and aluminum toxicity are described. Discussions are presented on the regulation of the electrogenic H+ pump.  相似文献   

9.
A high-hydrostatic-pressure technique was employed to study the structure-function relationship of plant vacuolar H+-ATPase from etiolated mung bean seedlings (Vigna radiata L.). When isolated vacuolar H+-ATPase was subjected to hydrostatic pressure, the activity of ATP hydrolysis was markedly inhibited in a time-, protein concentration- and pressure-dependent manner. The pressure treatment decreased both V max and K m of solubilized vacuolar H+-ATPase, implying an increase in ATP binding affinity, but a decrease in the ATP hydrolysis activity. Physiological substrate, Mg2+-ATP, augmented the loss of enzymatic activity upon pressure treatment. However, ADP, AMP, and Pi exerted substantial protective effects against pressurization. Steady-state ATP hydrolysis was more sensitive to pressurization than single-site ATPase activity. The inactivation of solubilized vacuolar H+-ATPase by pressure may result from changes in protein–protein interaction. The conformational change of solubilized vacuolar H+-ATPase induced by hydrostatic pressure was further determined by spectroscopic techniques. The inhibition of vacuolar H+-ATPase under pressurization involved at least two steps. Taken together, our work indicates that subunit–subunit interaction is crucial for the integrity and the function of plant vacuolar H+-ATPase. It is also suggested that the assembly of the vacuolar H+-ATPase complex is probably not random, but follows a sequestered pathway.  相似文献   

10.
We investigated the effect of the exogenous polyamines spermine, spermidine and putrescine on modulation by ATP, K+, Na+, NH4 + and Mg2+ and on inhibition by ouabain of posterior gill microsomal Na+,K+-ATPase activity in the blue crab, Callinectes ornatus, acclimated to a dilute medium (21‰ salinity). This is the first kinetic demonstration of competition between spermine and spermidine for the cation sites of a crustacean Na+,K+-ATPase. Polyamine inhibition is enhanced at low cation concentrations: spermidine almost completely inhibited total ATPase activity, while spermine inhibition attained 58%; putrescine had a negligible effect on Na+,K+-ATPase activity. Spermine and spermidine affected both V and K for ATP hydrolysis but did not affect ouabain-insensitive ATPase activity. ATP hydrolysis in the absence of spermine and spermidine obeyed Michaelis–Menten behavior, in contrast to the cooperative kinetics seen for both polyamines. Modulation of V and K by K+, Na+, NH4 + and Mg2+ varied considerably in the presence of spermine and spermidine. These findings suggest that polyamine inhibition of Na+,K+-ATPase activity may be of physiological relevance to crustaceans that occupy habitats of variable salinity.  相似文献   

11.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

12.
Several Na+ transporters are functionally abnormal in the hypertensive rat. Here, we examined the effects of a high-salt load on renal Na+,K+-ATPase and the sodium-coupled glucose transporter (SGLT1) in Dahl salt-resistant (DR) and salt-sensitive (DS) rats. The protein levels of Na+,K+-ATPase and SGLT1 in the DS rat were the same as those in the DR rat, and were not affected by the high-salt load. In the DS rat, a high-salt load decreased Na+,K+-ATPase activity, and this decrease coincided with a decrease in the apparent Mechaelis constant (Km) for ATP, but not with a change of maximum velocity (Vmax). On the contrary, a high-salt load increased SGLT1 activity in the DS rat, which coincided with an increase in the Vmax for α-methyl glucopyranoside. The protein level of phosphorylated tyrosine residues in Na+,K+-ATPase was decreased by the high-salt load in the DS rat. The amount of phosphorylated serine was not affected by the high-salt load in DR rats, and could not be detected in DS rats. On the other hand, the amount of phosphorylated serine residues in SGLT1 was increased by the high-salt load. However, the phosphorylated tyrosine was the same for all samples. Therefore, we concluded that the high-salt load changes the protein kinase levels in DS rats, and that the regulation of Na+,K+-ATPase and SGLT1 activity occurs via protein phosphorylation.  相似文献   

13.
The effect of fusicoccin on Mg:ATP-dependent H+-pumping in microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings was investigated by measuring the initial rate of decrease in the absorbance of the ΔpH probe acridine orange. Fusicoccin stimulated Mg:ATP-dependent H+-pumping when the pH of the assay medium was in the range 7.0 to 7.6 while no effect of fusicoccin was detected between pH 6.6 and pH 6.0. Both basal and fusicoccin-stimulated H+-pumping were completely inhibited by vanadate and almost unaffected by nitrate. Fusicoccin did not change membrane permeability to protons and fusicoccin-induced stimulation of Mg:ATP-dependent H+-pumping was not affected by changes in the buffer capacity of the incubation medium. Deacetylfusicoccin stimulated H+-pumping as much as fusicoccin, while the physiologically inactive derivative 8-oxo-9-epideacetylfusicoccin did not. Stimulation of H+-pumping was saturated by 100 nanomolar fusicoccin. These data indicate that fusicoccin activates the plasma membrane H+-ATPase by acting at the membrane level independently of the involvement of other cell components. The percent stimulation by fusicoccin was the same at all ATP concentrations tested (0.5-5.0 millimolar), thus suggesting that with fusicoccin there is an increase in Vmax of the plasma membrane H+-ATPase rather than a decrease in its apparent Km for Mg:ATP.  相似文献   

14.
Lysophosphatidylcholine at concentrations of 30 micromolar stimulated the rate of MgATP-dependent H+-accumulation in oat (Avena sativa L. cv Rhiannon) root plasma membrane vesicles about 85% while the passive permeability of H+ was unchanged. Activation was dependent on chain length, degree of saturation, and head group of the lysophospholipid. A H+-ATPase assay was developed that allowed the simultaneous measurement of proton pumping and ATPase activity in the same sample. ATP hydrolysis was also stimulated by lysophospholipids and showed the same lipid specificity, but stimulation was only about 25% at 30 micromolar. At higher concentrations of lysophosphatidylcholine the ATPase activity in a latency-free system could be stimulated about 150%. The enzymic properties of proton pumping and ATP hydrolysis were otherwise identical with respect to vanadate sensitivity, Km for ATP and pH optimum. The stimulatory effect of lysophospholipids suggests that these compounds could be part of the regulatory system for plant plasma membrane H+-ATPase activity in vivo.  相似文献   

15.
The effect of fusicoccin (FC) on the activity of the PM H+-ATPase was investigated in a plasma membrane (PM) fraction from radish seedlings purified by the phase-partitioning procedure. FC stimulated the PM H+-ATPase activity by up to 100 %; the effect was essentially on Vmax with only a slight decrease of the apparent KM of the enzyme for ATP. FC-induced stimulation of the PM H+-ATPase was evident within the first minute and maximal within five minutes of membrane treatment with the toxin indicating that transmission of the signal from the activated receptor to the PM H+-ATPase is very rapid. Both FC-induced stimulation of the PM H+-ATPase and FC binding to its receptor decreased dramatically upon incubation of the membranes in ATPase assay medium at 33 °C in the absence of FC, due to the lability of the free FC receptor. FC-induced stimulation of the PM H+-ATPase was strongly pH dependent: absolute increase of activity was maximal at pH 7, while percent stimulation increased with the increase of pH up to pH 7.5; FC binding was scarcely influenced by pH in the pH range investigated. Taken as a whole, these results indicate that FC binding is a condition necessary, but not sufficient, for FC-induced stimulation of the PM H+-ATPase.  相似文献   

16.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 × 10?8M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5×10?8M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+ Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both and Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+ Preincubation of enzyme with 15 μM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 × 10?7M propranolol and 5 × 10?8M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 × 10?5M coenzyme A in combination with 5 × 10?8M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

17.
Several calcium-dependent protein kinases (CDPKs) are located in plant plasma membranes where they phosphorylate enzymes and transporters, like the H+-ATPase and water channels, thereby regulating their activities. In order to determine which kinases phosphorylate the H+-ATPase, a calcium-dependent kinase was purified from beetroot (Beta vulgaris L.) plasma membranes by anion-exchange chromatography, centrifugation in glycerol gradients and hydrophobic interaction chromatography. The kinetic parameters of this kinase were determined (V max: 3.5 μmol mg−1 min−1, K m for ATP: 67 μM, K m for syntide 2: 15 μM). The kinase showed an optimum pH of 6.8 and a marked dependence on low-micromolar Ca2+ concentrations (K d : 0.77 μM). During the purification procedure, a 63-kDa protein with an isoelectric point of 4.7 was enriched. However, this protein was shown not to be a kinase by mass spectrometry. Kinase activity gels showed that a 50-kDa protein could be responsible for most of the activity in purified kinase preparations. This protein was confirmed to be a CDPK by mass spectrometry, possibly the red beet ortholog of rice CDPK2 and Arabidopsis thaliana CPK9, both found associated with membranes. This kinase was able to phosphorylate purified H+-ATPase in a Ca2+-dependent manner.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

18.
In vivo treatment of maize (Zea mays L.) coleoptile segments with auxin (indole-3-acetic acid; IAA) and fusicoccin (FC) followed by plasma-membrane isolation was used to characterize the effects of these treatments on the plasma-membrane H+-ATPase. Both IAA and FC increased H+ extrusion and elongation rate of the coleoptile segments, FC more strongly than IAA. Plasma membranes isolated after in-vivo treatment with FC showed a twofold stimulation of ATP hydrolysis and a several-fold stimulation of H+ pumping, whereas no effect was observed after IAA treatment, irrespective of whether the plasma membranes were prepared by two-phase partitioning or sucrose-gradient centrifugation. A more detailed investigation of the kinetic properties and pH dependence of the enzyme showed that FC treatment led to a twofold increase in V max, a decrease in K m for ATP from 1.5 mM to 0.24 mM, and a change in pH dependence resulting in increased activity at physiological pH levels. Again, IAA treatment showed no effects. Quantitation of the H+-ATPase by immunostaining using four different antibodies revealed no difference between IAA-and FC-treated material, and controls. From these data we conclude that (i) neither IAA nor FC gives rise to an increase in the amount of H+ -ATPase molecules in the plasma membrane that can be detected after membrane isolation, and (ii) if the H+-ATPase is activated by IAA, this activation is, in contrast to FC activation, not detectable after membrane isolation.Abbreviations BTP 1,3-bis(tris[hydroxymethyl]methylamino)-propane - FC fusicoccin - lyso-PC lysophosphatidylcholine - Mes 2-(N-morpholino)ethanesulfonic acid This paper is dedicated to Prof. Dieter Klämbt on the occasion of his 65th birthdayWe thank Ann-Christine Holmström and Adine Karlsson for excellent technical assistance, Professor Ramón Serrano (Instituto de Biologia Molecular y Celular de Plantas, UPV-CSIC, Universidad Politecnica, Valencia, Spain) for a generous gift of antisera to the H+-ATPase and Professor Wolfgang Michalke (Institut für Biologie III, Albert-Ludwigs-Universität, Freiburg, Germany) for kindly providing the monoclonal antibody to the H+-ATPase. This work was supported by the Swedish Natural Science Research Council, the Deutsche Agentur für Raumfahrtangelegenheiten (DARA, Bonn) via AGRAVIS (Bonn) and by the Ministerium für Wissenschaft und Forschung (MWF, Düsseldorf). Thomas Jahn received scholarships from the Deutsche Graduiertenförderung des Landes Nordrhein-Westfalen and the Deutscher Akademischer Austauschdienst (DAAD, Bonn).  相似文献   

19.
Vesicles derived from maize roots retain a membrane bound H+-ATPase that is able to pump H+ at the expense of ATP hydrolysis. In this work it is shown that heparin, fucose-branched chondroitin sulfate and dextran sulfate 8000 promote a shift of the H+-ATPase optimum pH from 6.0 to 7.0. This shift is a result of a dual effect of the sulfated polysaccharides, inhibition at pH 6.0 and activation at pH 7.O. At pH 6.0 dextran 8000 promotes an increase of the apparent Km for ATP from 0.28 to 0.95 mM and a decrease of the Vmax from 14.5 to 7.1 mol Pi/mg · 30 min–1. At pH 7.0 dextran 8000 promotes an increase in Vmax from 6.7 to 11.7 mol Pi/mg · 30 min–1. In the presence of lysophosphatidylcholine the inhibitory effect of the sulfated polysaccharides observed at pH 6.0 was not altered but the activation of pH 7.0 decreased. It was found that in the presence of sulfated polysaccharides the ATPase became highly sensitive to K+ and Na+. Both the inhibition at pH 6.0 and the activation promoted by the polysaccharide were antagonized by monovalent cations (K+>Na+Li+).Abbreviations Mops 4-morpholinopropanesulfonic acid - EDTA ethylenediaminetetraacetic acid - ACMA 9-amino-6-chloro-2-methoxyacridine - FCCP carbonyl cyanide p(trifluoromethoxy)-phenylhyrazone  相似文献   

20.
The pattern of solute accumulation and the activities of key enzymes involved in metabolism of proline and betaine were investigated in three ecotypes of reed from different habitats: swamp reed (SR), dune reed (DR), and heavy salt meadow reed (HSR). The two terrestrial reed ecotypes, DR and HSR, exhibited a higher capacity for osmotic adjustment; they accumulated higher contents of K+ and Ca2+ in the leaves in comparison with SR. DR also had the highest soluble sugar content in its leaves. HSR has higher levels of Na+ in its root environment and this was reflected by considerable accumulation of Na+ in the HSR rhizome. However, the different zones of its leaf lamina (upper, middle and lower) did not exhibit increased levels of Na+, suggesting that HSR has the ability to accumulate Na+ in the rhizome to protect the shoots from excessive Na+ toxicity. DR and HSR had higher levels of proline and betaine in the leaves than did SR. This difference was consistent with the activities of the various biosynthetic enzymes: betaine aldehyde dehydrogenase (BADH), pyrroline-5-carboxylate reductase (P5CR) and ornithine--aminotransferase (OAT) were enhanced in DR and HSR as compared to SR, whereas proline oxidase (PO) activities were inhibited. These findings suggest that changes in the activities of enzymes involved in osmotregulation might play important roles in the adaptation of reed, a hydrophilic plant, to more extreme dune and saline habitats. The relative contributions of the various proline synthetic pathways are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号