首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of nitrite and ammonium on methane-dependent denitrification   总被引:1,自引:0,他引:1  
For effective application of methane-dependent denitrification (MDD) in the treatment of wastewater containing NO(2)(-) or NH(4)(+), the effect of these inorganic nitrogen compounds on MDD activity needs to be clarified. The MDD activity of sludge acclimatized with CH(4) and O(2) was determined with mineral media of different nitrogen-compound compositions in the presence of 0.21 atm CH(4) and 0.20 atm O(2). Incubations with media containing only NO(2)(-) or two of the three inorganic nitrogen compounds (NO(3)(-)+NO(2)(-), NO(2)(-)+NH(4)(+) or NH(4)(+)+NO(3)(-)) resulted in MDD activity equal to or higher than that with media containing only NO(3)(-). However, there was no MDD activity in media containing NO(2)(-) at 10 degrees C, probably because of serious inhibition of NO(2)(-) on methane oxidation. MDD occurred in media containing only NH(4)(+), although the total nitrogen removal efficiency was very low. These results show that NO(2)(-) and NH(4)(+), in the presence of NO(x)(-), do not inhibit but rather promote MDD. Consequently, NH(4)(+) does not need to be completely oxidized to NO(3)(-) in the nitrification reactor before MDD. However, under psychrophilic conditions, NO(2)(-) seriously inhibited MDD. Therefore, the nitrification reactor must not discharge effluent containing NO(2)(-) under psychrophilic conditions.  相似文献   

2.
Methane (CH4) can be used as an alternative carbon source for denitrification with added oxygen (O2). However, the off-gas of denitrification reactors using a CH4-O2 mixture contains unused CH4 and O2 in proportions that make it unusable for fuel, carry explosion risks, and, if released into the atmosphere, contribute to the greenhouse effect. This study tested a novel reactor with a partition dividing the headspace completely and extending partly into the liquid layer. When CH4 and O2 were supplied separately to the liquid layer on opposite sides of the partition, the methane-dependent denitrification (MDD) activity was similar to that when the two gases were supplied as a mixture. In reactors with separate gas supplies, the off-gas from the CH4 supply side was high in CH4 and low in O2, and was usable for fuel, and that from the O2 supply side was very low in CH4, and might be released into the atmosphere. MDD activity increased with the O2 supply rate, and separate discharge of CH4 and O2 was maintained. The concentration of dissolved methane in the effluent was decreased by lowering the CH4/O2 supply ratio to 1.0 and drawing the effluent from the O2 supply side. This novel reactor enhances the safety of MDD, allows reuse of methane as fuel, and reduces methane leakage to the atmosphere.  相似文献   

3.
An anoxic, sulfidic ocean that may have existed during the Proterozoic Eon (0.54-2.4 Ga) would have had limited trace metal abundances because of the low solubility of metal sulfides. The lack of copper, in particular, could have had a significant impact on marine denitrification. Copper is needed for the enzyme that controls the final step of denitrification, from N(2) O to N(2) . Today, only about 5-6% of denitrification results in release of N(2) O. If all denitrification stopped at N(2) O during the Proterozoic, the N(2) O flux could have been 15-20 times higher than today, producing N(2) O concentrations of several ppmv, but only if O(2) levels were relatively high (>0.1 PAL). At lower O(2) levels, N(2) O is rapidly photodissociated. Methane concentrations may also have been elevated during this time, as has been previously suggested. A lack of dissolved O(2) and sulfate in the deep ocean could have produced a high methane flux from marine sediments, as much as 10-20 times today's methane flux from land. The photochemical lifetime of CH(4) increases as more CH(4) is added to the atmosphere, so CH(4) concentrations of up to 100 ppmv are possible during this time. The combined greenhouse effect of CH(4) and N(2) O could have provided up to 10° of warming, thereby keeping the surface warm during the Proterozoic without necessitating high CO(2) levels. A second oxygenation event near the end of the Proterozoic would have resulted in a reduction in both atmospheric N(2) O and CH(4) , perhaps triggering the Neoproterozoic "Snowball Earth" glaciations.  相似文献   

4.
R. Roy  R. Knowles 《Applied microbiology》1995,61(12):4278-4283
Addition of nitrapyrin, allylthiourea, C(inf2)H(inf2), and CH(inf3)F to freshwater sediment slurries inhibited CH(inf4) oxidation and nitrification to similar extents. Dicyandiamide and allylsulfide were less inhibitory for CH(inf4) oxidation than for nitrification. Allylsulfide was the most potent inhibitor of nitrification, and the estimated 50% inhibitory concentrations for this process and CH(inf4) oxidation were 0.2 and 121 (mu)M, respectively. At a concentration of 2 (mu)M allylsulfide, growth and CH(inf4) oxidation activity of Methylosinus trichosporium OB3b were not inhibited. Allylsulfide at 200 (mu)M inhibited the growth of M. trichosporium by approximately 50% but did not inhibit CH(inf4) oxidation activity. Nitrite production by cells of M. trichosporium was not significantly affected by allylsulfide, except at a concentration of 2 mM, when growth and CH(inf4) oxidation were also inhibited by about 50%. Methane monooxygenase activity present in soluble fractions of M. trichosporium was not inhibited significantly by allylsulfide at either 200 (mu)M or 2 mM. These results suggest that the partial inhibition of CH(inf4) oxidation in sediment slurries by high allylsulfide concentrations may be caused by an inhibition of the growth of methanotrophs rather than an inhibition of methane monooxygenase activity specifically. We conclude that allylsulfide is a promising tool for the study of interactions of methanotrophs and nitrifiers in N cycling and CH(inf4) turnover in natural systems.  相似文献   

5.
Methyl fluoride (CH(3)F) and dimethyl ether (DME) inhibited nitrification in washed-cell suspensions of Nitrosomonas europaea and in a variety of oxygenated soils and sediments. Headspace additions of CH(3)F (10% [vol/vol]) and DME (25% [vol/vol]) fully inhibited NO(2) and N(2)O production from NH(4) in incubations of N. europaea, while lower concentrations of these gases resulted in partial inhibition. Oxidation of hydroxylamine (NH(2)OH) by N. europaea and oxidation of NO(2) by a Nitrobacter sp. were unaffected by CH(3)F or DME. In nitrifying soils, CH(3)F and DME inhibited N(2)O production. In field experiments with surface flux chambers and intact cores, CH(3)F reduced the release of N(2)O from soils to the atmosphere by 20- to 30-fold. Inhibition by CH(3)F also resulted in decreased NO(3) + NO(2) levels and increased NH(4) levels in soils. CH(3)F did not affect patterns of dissimilatory nitrate reduction to ammonia in cell suspensions of a nitrate-respiring bacterium, nor did it affect N(2)O metabolism in denitrifying soils. CH(3)F and DME will be useful in discriminating N(2)O production via nitrification and denitrification when both processes occur and in decoupling these processes by blocking NO(2) and NO(3) production.  相似文献   

6.
The inhibition of methane oxidation by cell suspensions of Methylococcus capsulatus (Bath) exposed to hydrochlorofluorocarbon 21 (HCFC-21; difluorochloromethane [CHF(inf2)Cl]), HCFC-22 (fluorodichloromethane [CHFCl(inf2)]), and various fluorinated methanes was investigated. HCFC-21 inhibited methane oxidation to a greater extent than HCFC-22, for both the particulate and soluble methane monooxygenases. Among the fluorinated methanes, both methyl fluoride (CH(inf3)F) and difluoromethane (CH(inf2)F(inf2)) were inhibitory while fluoroform (CHF(inf3)) and carbon tetrafluoride (CF(inf4)) were not. The inhibition of methane oxidation by HCFC-21 and HCFC-22 was irreversible, while that by methyl fluoride was reversible. The HCFCs also proved inhibitory to methanol dehydrogenase, which suggests that they disrupt other aspects of C(inf1) catabolism in addition to methane monooxygenase activity.  相似文献   

7.
The activity and distribution of methanotrophs in soil depend on the availability of CH4 and O2. Therefore, we investigated the activity and structure of the methanotrophic community in rice field soil under four factorial combinations of high and low CH4 and O2 concentrations. The methanotrophic population structure was resolved by denaturant gradient gel electrophoresis (DGGE) with different PCR primer sets targeting the 16S rRNA gene, and two functional genes coding for key enzymes in methanotrophs, i.e. the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Changes in the biomass of type I and II methanotrophic bacteria in the rice soil were determined by analysis of phospholipid-ester-linked fatty acid (PLFA) biomarkers. The relative contribution of type I and II methanotrophs to the measured methane oxidation activity was determined by labelling of soil samples with 14CH4 followed by analysis of [14C]-PLFAs. CH4 oxidation was repressed by high O2 (20.5%), and enhanced by low O2 (1%). Depending on the CH4 and O2 mixing ratios, different methanotrophic communities developed with a higher diversity at low than at high CH4 concentration as revealed by PCR-DGGE. However, a prevalence of type I or II populations was not detected. The [14C]-PLFA fingerprints, on the other hand, revealed that CH4 oxidation activity was dominated by type I methanotrophs in incubations with low CH4 mixing ratios (1000 p.p.m.v.) and during initiation of CH4 consumption regardless of O2 or CH4 mixing ratio. At high methane mixing ratios (10 000 p.p.m.v.), type I and II methanotrophs contributed equally to the measured CH4 metabolism. Collectively, type I methanotrophs responded fast and with pronounced shifts in population structure and dominated the activity under all four gas mixtures. Type II methanotrophs, on the other hand, although apparently more abundant, always present and showing a largely stable population structure, became active later and contributed to CH4 oxidation activity mainly under high CH4 mixing ratios.  相似文献   

8.
Experiments were done to test the hypothesis that atmospheric CH(4) oxidizers in a well-drained alpine tundra soil are supported by CH(4) production from anaerobic microsites in the soil. Soil was subjected to 22 days of anaerobic conditions with elevated H(2) and CO(2) in order to stimulate methanogenesis. This treatment stimulated subsequent atmospheric CH(4) consumption, probably by increasing soil methanogenesis. After removal from anaerobic conditions, soils emitted CH(4) for up to 6 h, then oxidized atmospheric CH(4) at 111 (+/- 5.7) pmol (g dry weight)(-1) h(-1), which was more than 3 times the rate of control soils. Further supporting our hypothesis, additions of lumazine, a highly specific inhibitor of methanogenesis, prevented the stimulation of atmospheric CH(4) oxidation by the anaerobic treatment. The method used to create anaerobic conditions with elevated H(2) and CO(2) also elevated headspace CH(4) concentrations. However, elevated CH(4) concentrations under aerobic conditions did not stimulate CH(4) oxidation as much as preexposure to H(2) and CO(2) under anaerobic conditions. Anaerobic conditions created by N(2) flushing did not stimulate atmospheric CH4 oxidation, probably because N2 flushing inhibited methanogenesis by removing necessary precursors for methane production. We conclude that anaerobic conditions with elevated H(2) and CO(2) stimulate atmospheric CH(4) oxidation in this dry alpine tundra soil by increasing endogenous CH(4) production. This effect was prevented by inhibiting methanogenesis, indicating the importance of endogenous CH(4) production in a CH(4-) consuming soil.  相似文献   

9.
This study compared the effect of four pure carbon supplements on biological denitrification to a liquor derived as a by-product from the wet oxidation (WO) of waste activated sludge. Sequencing batch reactors were used to acclimate sludge biomass, which was used in batch assays. Acetate, WO liquor and ethanol-supplementation generated the fastest denitrification rates. Acetate and WO liquor were efficiently utilised by all acclimated biomass types, while poor rates were achieved with methanol and formate. When comparing an inoculum from an ethanol-supplemented and non-supplemented wastewater treatment plant (WWTP), the ethanol-acclimated sludge obtained superior denitrification rates when supplemented with ethanol. Similarly high nitrate removal rates were achieved with both sludge types with acetate and WO liquor supplementation, indicating that WO liquors could achieve excellent rates of nitrate removal. The performance of the WO liquor was attributed to the variety of organic carbon substrates (particularly acetic acid) present within the liquor.  相似文献   

10.
Growth of five strains of sulfur-oxidizing bacteria Acidithiobacillus thiooxidans, including strain NB1-3, was inhibited completely by 50 microM of sodium tungstate (Na(2)WO(4)). When the cells of NB1-3 were incubated in 0.1 M beta-alanine-SO(4)(2-) buffer (pH 3.0) with 100 microM Na(2)WO(4) for 1 h, the amount of tungsten bound to the cells was 33 microg/mg protein. Approximately 10 times more tungsten was bound to the cells at pH 3.0 than at pH 7.0. The tungsten binding to NB1-3 cells was inhibited by oxyanions such as sodium molybdenum and ammonium vanadate. The activities of enzymes involved in elemental sulfur oxidation of NB1-3 cells such as sulfur oxidase, sulfur dioxygenase, and sulfite oxidase were strongly inhibited by Na(2)WO(4). These results indicate that tungsten binds to NB1-3 cells and inhibits the sulfur oxidation enzyme system of the cells, and as a result, inhibits cell growth. When portland cement bars supplemented with 0.075% metal nickel and with 0.075% metal nickel and 0.075% calcium tungstate were exposed to the atmosphere of a sewage treatment plant containing 28 ppm of H(2)S for 2 years, the weight loss of the portland cement bar with metal nickel and calcium tungstate was much lower than the cement bar containing 0.075% metal nickel.  相似文献   

11.
Zheng H  Lipscomb JD 《Biochemistry》2006,45(6):1685-1692
The hydroxylase component (MMOH) of the soluble form of methane monooxygenase (sMMO) isolated from Methylosinus trichosporium OB3b catalyzes both the O2 activation and the CH4 oxidation reactions at the oxygen-bridged dinuclear iron cluster present in its buried active site. During the reaction cycle, the diiron cluster forms a bis-mu-oxo-(Fe(IV))2 intermediate termed compound Q (Q) that reacts directly with methane. Many adventitious substrates also react with Q, most at a relatively slow rate. We have proposed that Q reacts preferentially with CH4 because the sMMO regulatory component MMOB induces a size selective pore into the MMOH active site as the two components form a complex. Support for this proposal has come through the observation of a nonlinear Arrhenius plot for the CH4 oxidation, presumably due to a shift in rate-limiting step from substrate binding at low temperature to C-H bond cleavage at high temperature. Reactions of all substrates other than CH4 fail to exhibit a break in the Arrhenius plot because binding is always rate limiting in the temperature range explored. Here we show that it is possible to induce a break in the Arrhenius plot for the ethane reaction with Q by using an MMOB mutant termed DBL2 (S109A/T111A) in which residues at the MMOH-MMOB interface are reduced in size. We hypothesize that this increases the ethane binding rate and shifts the Arrhenius breakpoint into the observable temperature range. As a result of this shift, the kinetic and activation parameters of the C-H bond breaking reaction for both methane and ethane can be observed using the DBL2 mutant. A 2H-KIE is observed for both substrate oxidation reactions when using DBL2, whereas only CH4 oxidation exhibits an effect when using wild type MMOB, consistent with the C-H bond cleaving reaction becoming at least partially rate limiting for ethane. Analysis of the temperature dependence of the 2H-KIE for ethane and methane for reactions using both mutant and wild type forms of MMOB suggests that quantum tunneling plays a significant role in methane oxidation but not ethane oxidation.  相似文献   

12.
Methane is used as an alternative carbon source in the denitrification of wastewater lacking organic carbon sources because it is nontoxic and may be efficiently produced by anaerobic biological processes. Methane-dependent denitrification (MDD) in the presence of oxygen requires the co-occurrence of methanotrophy and denitrification. Activated sludge was incubated with 13C-labeled methane in either a nitrate-containing medium or a nitrate-free medium. Then, bacterial and methanotrophic populations were analyzed by cloning analysis and terminal restriction fragment length polymorphism analysis targeting 16S rRNA gene and cloning analysis targeting pmoA genes. DNA-based stable-isotope probing (DNA-SIP) analysis of the 16S rRNA gene revealed an association of the Methylococcaceae and the Hyphomicrobiaceae in a MDD ecosystem. Furthermore, supplementation of nitrate stimulated methane consumption and the activity of methanotrophic populations (i.e. the stimulation of uncultivated relatives of distinct groups of the Methylococcaceae). In particular, uncultured type-X methanotrophs of Gammaproteobacteria were dominant when nitrate was added, i.e. in the MDD incubations. On the other hand, most methanotrophs (types I, II, and X methanotrophs) were found to have been labeled with 13C under nitrate-free conditions. This DNA-SIP study identifies key bacterial populations involved in a MDD ecosystem.  相似文献   

13.
Cell growth of three hundred iron-oxidizing bacteria isolated from natural environments was inhibited strongly by 0.05 mM, and completely by 0.2 mM of sodium tungstate (Na2WO4), respectively. Since no great difference in the level of tungsten inhibition was observed among the 300 strains tested, the mechanism of inhibition by Na2WO4 was studied with Acidithiobacillus ferrooxidans strain AP19-3. When resting cells of AP19-3 were incubated in 0.1 M beta-alanine-SO4(2-) buffer (pH 3.0) with 0.1 mM Na2WO4 for 1 h, the amount of tungsten bound to the cells was 12 microg/mg protein. The optimum pH for tungsten binding to the resting cells was 2 to approximately 3. Approximately 2 times more tungsten bound to the cells at pH 3.0 than at pH 6.0. The tungsten binding was specifically inhibited by sodium molybdenum. However, copper, nickel, cadmium, zinc, manganese, cobalt, and vanadate did not disturb tungsten binding to the resting cells. The iron-oxidizing activity of AP19-3 was inhibited 24, 62, and 77% by 1, 5, and 10 mM of Na2WO4, respectively. Among the components of iron oxidation enzyme system, iron:cytochrome c oxidoreductase activity was not inhibited by 10 mM of Na2WO4. In contrast, the activity of cytochrome c oxidase purified highly from the strain was inhibited 50 and 72%, respectively, by 0.05 and 0.1 mM of Na2WO4. The amounts of tungsten bound to plasma membrane, cytosol fraction, and a purified cytochrome c oxidase were 8, 0.5, and 191 microg/mg protein, respectively. From the results, the growth inhibition by Na2WO4 observed in A. ferrooxidans is explained as follows: tungsten binds to cytochrome c oxidase in plasma membranes and inhibits cytochrome c oxidase activity, and as a results, the generation of energy needed for cell growth from the oxidation of Fe2+ is stopped.  相似文献   

14.
Fluorotelomer alcohols (FTOHs; CF(3)(CF(2))(x)C(2)H(4)OH; where x=3, 5, 7, 9) are a novel class of polyfluorinated contaminants, recently detected in the North American atmosphere, that are possible precursors to the series of perfluoroalkyl carboxylates (PFCAs) in human blood. An in vivo rat study validated earlier independent work that poly- and per-fluoroalkyl carboxylates were metabolites of FTOHs, but our detection of several novel metabolites prompted us to examine their pathways in greater detail using isolated rat hepatocytes. Using 8:2 FTOH (i.e. where x=7) as a model compound, the metabolic products formed by isolated rat hepatocytes were identified, and three synthesized intermediates were incubated separately to elucidate the metabolic pathways. For 8:2 FTOH, a major fate was direct conjugation to form the O-glucuronide and O-sulfate. Using 2,4-dinitrophenylhydrazine (DNPH) trapping, the immediate oxidation product of 8:2 FTOH was identified as 8:2 fluorotelomer aldehyde (8:2 FTAL; CF(3)(CF(2))(7)CH(2)C(H)O). 8:2 FTAL was transient and eliminated HF non-enzymatically to yield 8:2 fluorotelomer alpha,beta-unsaturated aldehyde (8:2 FTUAL; CF(3)(CF(2))(6)CFCHC(H)O) which was also short-lived and reacted GSH and perhaps other endogenous nucleophiles. Four polyfluorinated acid intermediates were also detected, including 8:2 fluorotelomer carboxylate (8:2 FTCA; CF(3)(CF(2))(7)CH(2)C(O)O(-)), 8:2 fluorotelomer alpha,beta-unsaturated carboxylate (8:2 FTUCA; CF(3)(CF(2))(6)CFCHC(O)O(-)), tetrahydroperfluorodecanoate (CF(3)(CF(2))(6)(CH(2))(2)CO(2)(-)), and dihydroperfluorodecenoate (CF(3)(CF(2))(6)CHCHCO(2)(-)). The pathways leading to 8:2 FTCA and FTUCA involve oxidation of 8:2 FTAL, however, the pathways leading to the latter two polyfluorinated acids remain inconclusive. The fate of the unsaturated metabolites, 8:2 FTUAL and FTUCA, included conjugation with GSH and dehydrofluorination to yield alpha,beta-unsaturated GSH conjugates, and GS-8:2 FTUAL which was subsequently reduced to the corresponding alcohol. Perfluorooctanoate (PFOA) and minor amounts of perfluorononanoate (PFNA) were confirmed as metabolites of 8:2 FTOH, and the respective roles of beta- and alpha-oxidation mechanisms are discussed. The analogous acids, aldehydes, and conjugated metabolites of 4:2, 6:2, and 10:2 FTOH (i.e. where x=3, 5, and 9, respectively) were also detected, and metabolite profiles among FTOHs generally differed only in the length of their perfluoroalkyl chains. Preincubation with aminobenzotriazole, but not pyrazole, inhibited the formation of metabolites from all FTOHs, suggesting that their oxidation was catalyzed by P450, not alcohol dehydrogenase.  相似文献   

15.
Methanotrophic and nitrifying bacteria are both able to oxidize CH4 as well as NH4+. To date it is not possible to estimate the relative contribution of methanotrophs to nitrification and that of nitrifiers to CH4 oxidation and thus to assess their roles in N and C cycling in soils and sediments. This study presents new options for discrimination between the activities of methanotrophs and nitrifiers, based on the competitive inhibitor CH3F and on recovery after inhibition with C2H2. By using rice plant soil as a model system, it was possible to selectively inactivate methanotrophs in soil slurries at a CH4/CH3F/NH4+ molar ratio of 0.1:1:18. This ratio of CH3F to NH4+ did not affect ammonia oxidation, but methane oxidation was inhibited completely. By using the same model system, it could be shown that after 24 h of exposure to C2H2 (1,000 parts per million volume), methanotrophs recovered within 24 h while nitrifiers stayed inactive for at least 3 days. This gave an "assay window" of 48 h when only methanotrophs were active. Applying both assays to model microcosms planted with rice plants demonstrated a major contribution of methanotrophs to nitrification in the rhizosphere, while the contribution of nitrifiers to CH4 oxidation was insignificant.  相似文献   

16.
Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+).  相似文献   

17.
Methyl fluoride (fluoromethane [CH(inf3)F]) has been used as a selective inhibitor of CH(inf4) oxidation by aerobic methanotrophic bacteria in studies of CH(inf4) emission from natural systems. In such studies, CH(inf3)F also diffuses into the anaerobic zones where CH(inf4) is produced. The effects of CH(inf3)F on pure and defined mixed cultures of anaerobic microorganisms were investigated. About 1 kPa of CH(inf3)F, similar to the amounts used in inhibition experiments, inhibited growth of and CH(inf4) production by pure cultures of aceticlastic methanogens (Methanosaeta spp. and Methanosarcina spp.) and by a methanogenic mixed culture of anaerobic microorganisms in which acetate was produced as an intermediate. With greater quantities of CH(inf3)F, hydrogenotrophic methanogens were also inhibited. At a partial pressure of CH(inf3)F of 1 kPa, homoacetogenic, sulfate-reducing, and fermentative bacteria and a methanogenic mixed culture of anaerobic microorganisms based on hydrogen syntrophy were not inhibited. The inhibition by CH(inf3)F of the growth and CH(inf4) production of Methanosarcina mazei growing on acetate was reversible. CH(inf3)F inhibited only acetate utilization by Methanosarcina barkeri, which is able to use acetate and hydrogen simultaneously, when both acetate and hydrogen were present. These findings suggest that the use of CH(inf3)F as a selective inhibitor of aerobic CH(inf4) oxidation in undefined systems must be interpreted with great care. However, by a careful choice of concentrations, CH(inf3)F may be useful for the rapid determination of the role of acetate as a CH(inf4) precursor.  相似文献   

18.
温度对土壤氧化大气CH4的影响   总被引:9,自引:1,他引:8  
讨论了温度对土壤氧化大气CH4的影响及其机理。当温度较低时土壤也具有一定的氧化大气CH4的能力,两者具有很高的相关关系,但是由于CH4氧化菌对大气CH4具有很强的亲和力以及大气CH4氧化所需活化能较低,因此土壤氧化大气CH4对温度的敏感度远低于产CH4,导致温度系数Q10较小。当大气CH4和O2扩散进入土壤的速率等于土壤中CH4和O2消耗的速率时,大气CH4氧化达到最大值,此时的土壤温度就是CH4氧化的最佳温度。如果温度继续升高并大于最佳温度,由于CH4氧化菌无法与利用O2能力更强的硝化细菌和其它微生物竞争利用土壤空气中有限的O2,使得土壤中CH4氧化菌的繁殖和活性降低。这一作用机理的提出较好地解释了为什么随着温度升高土壤氧化大气CH4能力呈低高低的态势。  相似文献   

19.
In laboratory incubation experiments, application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2',6'-diethyl acetanilide) to three tropical rice soils, widely differing in their physicochemical characteristics, under flooded condition inhibited methane (CH4) production. The inhibitory effect was concentration dependent and most remarkable in the alluvial soil. Thus, following application of butachlor at 5, 10, 50 and 100 microg g(-1) soil, respectively, cumulative CH4 production in the alluvial soil was inhibited by 15%, 31%, 91% and 98% over unamended control. Since CH4 production was less pronounced in the sandy loam and acid sulfate soil, the impact of amendment with butchalor, albeit inhibitory, was less extensive than the alluvial soil. Inhibition of CH4 production in butachlor-amended alluvial soil was related to the prevention in the drop in redox potential as well as low methanogenic bacterial population especially at high concentrations of butachlor. CH4 oxidation was also inhibited in butachlor-amended alluvial soil with the inhibitory effect being more prevalent under flooded condition. Inhibition in CH4 oxidation was related to a reduction in the population of soluble methane monooxygenase producing methanotrophs. Results demonstrate that butachlor, a commonly used herbicide in rice cultivation, even at very low concentrations can affect CH4 production and its oxidation, thereby influencing the biogeochemical cycle of CH4 in flooded rice soils.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号