首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the mechanism of signal propagation involved in the cooperative AMP inhibition of the homotetrameric enzyme pig-kidney fructose-1,6-bisphosphatase, Arg49 and Lys50 residues located at the C1-C2 interface of this enzyme were replaced using site-directed mutagenesis. The mutant enzymes Lys50Ala, Lys50Gln, Arg49Ala and Arg49Gln were expressed in Escherichia coli, purified to homogeneity and the initial rate kinetics were compared with the wild-type recombinant enzyme. The mutants exhibited kcat, Km and I50 values for fructose-2,6-bisphosphate that were similar to those of the wild-type enzyme. The kinetic mechanism of AMP inhibition with respect to Mg2+ was changed from competitive (wild-type) to noncompetitive in the mutant enzymes. The Lys50Ala and Lys50Gln mutants showed a biphasic behavior towards AMP, with total loss of cooperativity. In addition, in these mutants the mechanism of AMP inhibition with respect to fructose-1,6-bisphosphate changed from noncompetitive (wild-type) to uncompetitive. In contrast, AMP inhibition was strongly altered in Arg49Ala and Arg49Gln enzymes; the mutants had > 1000-fold lower AMP affinity relative to the wild-type enzyme and exhibited no AMP cooperativity. These studies strongly indicate that the C1-C2 interface is critical for propagation of the cooperative signal between the AMP sites on the different subunits and also in the mechanism of allosteric inhibition of the enzyme by AMP.  相似文献   

2.
Lysine 274 is conserved in all known fructose-1,6-bisphosphatase sequences. It has been implicated in substrate binding and/or catalysis on the basis of reactivity with pyridoxal phosphate as well as by x-ray crystallographic analysis. Lys274 of rat liver fructose-1,6-bisphosphatase was mutated to alanine by the polymerase chain reaction, and the T7-RNA polymerase-transcribed construct containing the mutant sequence was expressed in Escherichia coli. The mutant and wild-type forms of the enzyme were purified to homogeneity, and their specific activity, substrate dependence, and inhibition by fructose 2,6-bisphosphate and AMP were compared. While the mutant exhibited no change in maximal velocity, its Km for fructose 1,6-bisphosphate was 20-fold higher than that of the wild-type, and its Ki for fructose 2,6-bisphosphate was increased 1000-fold. Consistent with the unaltered maximal velocity, there were no apparent difference between the secondary structure of the wild-type and mutant enzyme forms, as measured by circular dichroism and ultraviolet difference spectroscopy. The Ki for the allosteric inhibitor AMP was only slightly increased, indicating that Lys274 is not directly involved in AMP inhibition. Fructose 2,6-bisphosphate potentiated AMP inhibition of both forms, but 500-fold higher concentrations of fructose 2,6-bisphosphate were needed to reduce the Ki for AMP for the mutant compared to the wild-type. However, potentiation of AMP inhibition of the Lys274----Ala mutant was evident at fructose 2,6-bisphosphate concentrations (approximately 100 microM) well below those that inhibited the enzyme, which suggests that fructose 2,6-bisphosphate interacts either with the AMP site directly or with other residues involved in the active site-AMP synergy. The results also demonstrate that although Lys274 is an important binding site determinant for sugar bisphosphates, it plays a more significant role in binding fructose 2,6-bisphosphate than fructose 1,6-bisphosphate, probably because it binds the 2-phospho group of the former while other residues bind the 1-phospho group of the substrate. It is concluded that the enzyme utilizes Lys274 to discriminate between its substrate and fructose 2,6-bisphosphate.  相似文献   

3.
AMP is an allosteric inhibitor of human muscle and liver fructose-1,6-bisphosphatase (FBPase). Despite strong similarity of the nucleotide binding domains, the muscle enzyme is inhibited by AMP approximately 35 times stronger than liver FBPase: I0.5 for muscle and for liver FBPase are 0.14 microM and 4.8 microM, respectively. Chimeric human muscle (L50M288) and chimeric human liver enzymes (M50L288), in which the N-terminal residues (1-50) were derived from the human liver and human muscle FBPases, respectively, were inhibited by AMP 2-3 times stronger than the wild-type liver enzyme. An amino acid exchange within the N-terminal region of the muscle enzyme towards liver FBPase (Lys20-->Glu) resulted in 13-fold increased I0.5 values compared to the wild-type muscle enzyme. However, the opposite exchanges in the liver enzyme (Glu20-->Lys and double mutation Glu19-->Asp/Glu20-->Lys) did not change the sensitivity for AMP inhibition of the liver mutant (I0.5 value of 4.9 microM). The decrease of sensitivity for AMP of the muscle mutant Lys20-->Glu, as well as the lack of changes in the inhibition by AMP of liver mutants Glu20-->Lys and Glu19-->Asp/Glu20-->Lys, suggest a different mechanism of AMP binding to the muscle and liver enzyme.  相似文献   

4.
Modification of a highly reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase with N-ethylmaleimide results in the loss of activation of the enzyme by monovalent cations. Low concentrations of fructose 2,6-bisphosphate or high (inhibitory) levels of fructose 1,6-bisphosphate protect the enzyme against the loss of monovalent cation activation, while non-inhibitory concentrations of the substrate gave partial protection. The allosteric inhibitor AMP markedly increases the reactivity of the cysteine residue. The results indicate that fructose 2,6-bisphosphate can protect the enzyme against the loss of potassium activation by binding to an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit the enzyme by binding to this allosteric site.  相似文献   

5.
The inhibitory effect of fructose 2,6-biphosphate on fructose 1,6-bisphosphatase was reinvestigated in order to solve the apparent contradiction between competition with the substrate and the synergism with AMP, a strictly noncompetitive inhibitor. The effect of fructose 2,6-bisphosphate was compared to that of other ligands of the enzyme, which, like the substrate and methyl (alpha + beta)fructofuranoside 1,6-bisphosphate bind to the active site or which, like AMP, bind to an allosteric site. An increase in temperature or pH, or the presence of sulfosalicylate, lithium or higher concentrations of magnesium as well as partial proteolysis by subtilisin increased [I]0.5 for fructose 2,6-bisphosphate and AMP without affecting Km. With the exception of the pH change, all these conditions were also without effect on the affinity of the enzyme for the competitive inhibitor, methyl (alpha + beta)fructofuranoside 1,6-bisphosphate. These observations can be explained by assuming that fructose 2,6-bisphosphate has no affinity for the active site of fructose 1,6-bisphosphatase but binds to an allosteric site which is different from the AMP site. Fructose 2,6-bisphosphate is therefore classified as an allosteric competitive inhibitor and a model is proposed which explains its synergism with AMP as well as the various cooperative effects.  相似文献   

6.
An allosteric phosphofructokinase (PFK) was created by sequence manipulation of the nonallosteric enzyme from the slime mold Dictyostelium discoideum (DdPFK). Most amino acid residues proposed as important for catalytic and allosteric sites are conserved in DdPFK except for a few of them, and their reversion did not modify its kinetic behavior. However, deletions at the unique C-terminal extension of this PFK produced a markedly allosteric enzyme. Thus, a mutant lacking the last 26 C-terminal residues exhibited hysteresis in the time course, intense cooperativity (n(H) = 3.8), and a 200-fold decrease in the apparent affinity for fructose 6-phosphate (S(0.5) = 4500 microm), strong activation by fructose 2,6-bisphosphate (K(act) = 0.1 microm) and fructose 1,6-bisphosphate (K(act) = 40 microm), dependence on enzyme concentration, proton inhibition, and subunit association-dissociation in response to fructose 6-phosphate versus the nonhysteretic and hyperbolic wild-type enzyme (n(H) = 1.0; K(m) = 22 microm) that remained as a stable tetramer. Systematic deletions and point mutations at the C-tail region of DdPFK identified the last C-terminal residue, Leu(834), as critical to produce a nonallosteric enzyme. All allosteric mutants were practically insensitive to MgATP inhibition, suggesting that this effect does not involve the same allosteric transition as that responsible for fructose 6-phosphate cooperativity and fructose bisphosphate activation.  相似文献   

7.
Rapid quench experiments at 25 degrees C were carried out on selected mutants of the sarco(endo)plasmic reticulum Ca(2+)-ATPase to assess the kinetics of the conformational changes of the dephosphoenzyme associated with ATP binding/phosphoryl transfer and the binding and dissociation of Ca(2+) at the cytoplasmically facing transport sites. The mutants Gly(233) --> Glu, Gly(233) --> Val, Pro(312) --> Ala, Leu(319) --> Arg, and Lys(684) --> Arg differed conspicuously with respect to the behavior of the dephosphoenzyme, although they were previously shown to display a common block of the transformation of the phosphoenzyme from an ADP-sensitive to an ADP-insensitive form. The maximum rate of the ATP binding/phosphoryl transfer reaction was reduced 3.6-fold in mutant Gly(233) --> Glu and more than 50-fold in mutant Lys(684) --> Arg, relative to wild type. In mutant Leu(319) --> Arg, the rate of the Ca(2+)-binding transition was reduced as much as 10-30-fold depending on the presence of ATP. In mutants Gly(233) --> Glu, Gly(233) --> Val, and Pro(312) --> Ala, the rate of the Ca(2+)-binding transition was increased at least 2-3-fold at acid pH but not significantly at neutral pH, suggesting a destabilization of the protonated form. The rate of Ca(2+) dissociation was reduced 12-fold in mutant Pro(312) --> Ala and 3.5-fold in Leu(319) --> Arg, and increased at least 4-fold in a mutant in which the putative Ca(2+) liganding residue Glu(309) was replaced by aspartate. The data support a model in which Pro(312) and Leu(319) are closely associated with the cation binding pocket, Gly(233) is part of a long-range signal transmission pathway between the ion-binding sites and the catalytic site, and Lys(684) is an essential catalytic residue that may function in the same way as its counterpart in the soluble hydrolases belonging to the haloacid dehalogenase superfamily.  相似文献   

8.
Human liver fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) has been purified 1200-fold using a heat treatment step followed by absorption on phosphocellulose at pH 8 and specific elution with buffer containing the substrate (fructose 1,6-bisphosphate) and allosteric effector (AMP). The enzyme is homogeneous in electrophoresis in polyacrylamide gel, in the presence and absence of denaturing agent. It has a molecular weight of 144 000 and is composed of four identical or nearly identical subunits. Fluorescence spectra indicate that the enzyme does not contain tryptophan residues. The pH optimum is 7.5 and the Km is determined as 0.8 microM. The enzyme is inhibited by AMP in cooperative manner with a K0 x 5 of 6 microM.  相似文献   

9.
The binding of beta-D-fructose 2,6-bisphosphate to rabbit muscle phosphofructokinase and rabbit liver fructose-1,6-bisphosphatase was studied using the column centrifugation procedure (Penefsky, H. S., (1977) J. Biol. Chem. 252, 2891-2899). Phosphofructokinase binds 1 mol of fructose 2,6-bisphosphate/mol of protomer (Mr = 80,000). The Scatchard plots of the binding of fructose 2,6-bisphosphate to phosphofructokinase are nonlinear in the presence of three different buffer systems and appear to exhibit negative cooperativity. Fructose 1,6-bisphosphate and glucose 1,6-bisphosphate inhibit the binding of fructose-2,6-P2 with Ki values of 15 and 280 microM, respectively. Sedoheptulose 1,7-bisphosphate, ATP, and high concentrations of phosphate also inhibit the binding. Other metabolites including fructose-6-P, AMP, and citrate show little effect. Fructose-1,6-bisphosphatase binds 1 mol of fructose 2,6-bisphosphate/mol of subunit (Mr = 35,000) with an affinity constant of 1.5 X 10(6) M-1. Fructose 1,6-bisphosphate, fructose-6-P, and phosphate are competitive inhibitors with Ki values of 4, 2.7, and 230 microM, respectively. Sedoheptulose 1,7-bisphosphate (1 mM) inhibits approximately 50% of the binding of fructose 1,6-bisphosphate to fructose bisphosphatase, but AMP has no effect. Mn2+, Co2+, and a high concentration of Mg2+ inhibit the binding. Thus, we may conclude that fructose 2,6-bisphosphate binds to phosphofructokinase at the same allosteric site for fructose 1,6-bisphosphate while it binds to the catalytic site of fructose-1,6-bisphosphatase.  相似文献   

10.
Inhibition of rat liver fructose-1,6-bisphosphatase by AMP was uncompetitive with respect to fructose 1,6-bisphosphate in the absence of fructose 2,6-bisphosphate, but non-competitive in its presence. AMP was unable to bind to the enzyme except in the presence of one of the fructose bisphosphates; the binding stoicheiometry was 2 molecules/tetramer. Increasing concentrations of Mg2+ increased the Hill coefficient h and the apparent Ki for AMP, whereas fructose 2,6-bisphosphate had the opposite effect. Increasing concentrations of both AMP and fructose 2,6-bisphosphate decreased h and increased the apparent Ka for Mg2+. AMP slightly decreased, and Mg2+ slightly increased, the apparent Ki for fructose 2,6-bisphosphate, but each had only small effects on h. These results are interpreted in terms of a new three-state model for the allosteric properties of the enzyme, in which fructose 2,6-bisphosphate can bind both to the catalytic site and to an allosteric site and AMP can bind to the enzyme only when the catalytic site is occupied.  相似文献   

11.
Pyruvate kinase M(1), a nonallosteric isozyme, lacks heterotropic allosteric effect involving fructose-1,6-bisphosphate (FBP). To explore the molecular basis for this, a series of mutants were prepared and characterized, in which the possible candidate, Glu-432, was replaced in the rat M(1) isozyme and its allosteric mutant with the replacement of Ala-398 by Arg. Although these single mutants of Glu-432 remained nearly fully active, similar to the wild type, only the mutants with replacements by Lys and Ala were more efficiently activated by FBP when the enzymes were inhibited by L-phenylalanine. Kinetic analyses and ligand-induced fluorescence quenching studies using the allosteric double mutants indicated that the loss of a negative charge at residue 432 led to a dramatic decrease in the apparent activation constant and apparent K(d) for FBP. Furthermore, this enhancement was found to be associated with the modification of the FBP-binding site rather than the alteration of the subunit assembly. These findings suggest that Glu-432 hinders the heterotropic allosteric effect by preventing the binding of FBP through a repulsive electrostatic interaction and thereby contributes to its unique unregulated properties, independent of the shifted allosteric transition.  相似文献   

12.
Limited treatment of native pig kidney fructose-1,6-bisphosphatase (50 microM enzyme subunit) with [14C]N-ethylmaleimide (100 microM) at 30 degrees C, pH 7.5, in the presence of AMP (200 microM) results in the modification of 1 reactive cysteine residue/enzyme subunit. The N-ethylmaleimide-modified fructose-1,6-bisphosphatase has a functional catalytic site but is no longer inhibited by fructose 2,6-bisphosphate. The enzyme derivative also exhibits decreased affinity toward Mg2+. The presence of fructose 2,6-bisphosphate during the modification protects the enzyme against the loss of fructose 2,6-bisphosphate inhibition. Moreover, the modified enzyme is inhibited by monovalent cations, as previously reported (Reyes, A., Hubert, E., and Slebe, J.C. (1985) Biochem. Biophys. Res. Commun. 127, 373-379), and does not show inhibition by high substrate concentrations. A comparison of the kinetic properties of native and N-ethylmaleimide-modified fructose-1,6-bisphosphatase reveals differences in some properties but none is so striking as the complete loss of fructose 2,6-bisphosphate sensitivity. The results demonstrate that fructose 2,6-bisphosphate interacts with a specific allosteric site on fructose-1,6-bisphosphatase, and they also indicate that high levels of fructose 1,6-bisphosphate inhibit the enzyme by binding to this fructose 2,6-bisphosphate allosteric site.  相似文献   

13.
A new purification procedure for rat liver fructose-1,6-bisphosphatase that involves use of Procion Red-Sepharose is described. The purified enzyme was homogeneous, had a subunit Mr of 40 000-41 000 and seemed to be undegraded. The enzyme could be phosphorylated by cyclic AMP-dependent protein kinase with a stoicheiometry of one per subunit. Phosphorylation caused a 2-fold decrease in the Km of the enzyme for fructose 1,6-bisphosphate, but did not affect its allosteric responses to AMP, Mg2+ and fructose 2,6-bisphosphate.  相似文献   

14.
Fructose 1,6-bisphosphate aldolase catalyses the reversible condensation of glycerone-P and glyceraldehyde 3-phosphate into fructose 1,6-bisphosphate. A recent structure of the Escherichia coli Class II fructose 1,6-bisphosphate aldolase [Hall, D.R., Leonard, G.A., Reed, C.D., Watt, C.I., Berry, A. & Hunter, W.N. (1999) J. Mol. Biol. 287, 383-394] in the presence of the transition state analogue phosphoglycolohydroxamate delineated the roles of individual amino acids in binding glycerone-P and in the initial proton abstraction steps of the mechanism. The X-ray structure has now been used, together with sequence alignments, site-directed mutagenesis and steady-state enzyme kinetics to extend these studies to map important residues in the binding of glyceraldehyde 3-phosphate. From these studies three residues (Asn35, Ser61 and Lys325) have been identified as important in catalysis. We show that mutation of Ser61 to alanine increases the Km value for fructose 1, 6-bisphosphate 16-fold and product inhibition studies indicate that this effect is manifested most strongly in the glyceraldehyde 3-phosphate binding pocket of the active site, demonstrating that Ser61 is involved in binding glyceraldehyde 3-phosphate. In contrast a S61T mutant had no effect on catalysis emphasizing the importance of an hydroxyl group for this role. Mutation of Asn35 (N35A) resulted in an enzyme with only 1.5% of the activity of the wild-type enzyme and different partial reactions indicate that this residue effects the binding of both triose substrates. Finally, mutation of Lys325 has a greater effect on catalysis than on binding, however, given the magnitude of the effects it is likely that it plays an indirect role in maintaining other critical residues in a catalytically competent conformation. Interestingly, despite its proximity to the active site and high sequence conservation, replacement of a fourth residue, Gln59 (Q59A) had no significant effect on the function of the enzyme. In a separate study to characterize the molecular basis of aldolase specificity, the agaY-encoded tagatose 1,6-bisphosphate aldolase of E. coli was cloned, expressed and kinetically characterized. Our studies showed that the two aldolases are highly discriminating between the diastereoisomers fructose bisphosphate and tagatose bisphosphate, each enzyme preferring its cognate substrate by a factor of 300-1500-fold. This produces an overall discrimination factor of almost 5 x 105 between the two enzymes. Using the X-ray structure of the fructose 1,6-bisphosphate aldolase and multiple sequence alignments, several residues were identified, which are highly conserved and are in the vicinity of the active site. These residues might potentially be important in substrate recognition. As a consequence, nine mutations were made in attempts to switch the specificity of the fructose 1,6-bisphosphate aldolase to that of the tagatose 1,6-bisphosphate aldolase and the effect on substrate discrimination was evaluated. Surprisingly, despite making multiple changes in the active site, many of which abolished fructose 1, 6-bisphosphate aldolase activity, no switch in specificity was observed. This highlights the complexity of enzyme catalysis in this family of enzymes, and points to the need for further structural studies before we fully understand the subtleties of the shaping of the active site for complementarity to the cognate substrate.  相似文献   

15.
The active site of pig kidney fructose-1,6-bisphosphatase (EC 3.1.3.11) is shared between subunits, Arg-243 of one chain interacting with fructose-1,6-bisphosphate or fructose-2,6-bisphosphate in the active site of an adjacent chain. In this study, we present the X-ray structures of the mutant version of the enzyme with Arg-243 replaced by alanine, crystallized in both T and R allosteric states. Kinetic characteristics of the altered enzyme showed the magnesium binding and inhibition by AMP differed slightly; affinity for the substrate fructose-1,6-bisphosphate was reduced 10-fold and affinity for the inhibitor fructose-2,6-bisphosphate was reduced 1,000-fold (Giroux E, Williams MK, Kantrowitz ER, 1994, J Biol Chem 269:31404-31409). The X-ray structures show no major changes in the organization of the active site compared with wild-type enzyme, and the structures confirm predictions of molecular dynamics simulations involving Lys-269 and Lys-274. Comparison of two independent models of the T form structures have revealed small but significant changes in the conformation of the bound AMP molecules and small reorganization of the active site correlated with the presence of the inhibitor. The differences in kinetic properties of the mutant enzyme indicate the key importance of Arg-243 in the function of fructose-1,6-bisphosphatase. Calculations using the X-ray structures of the Arg-243-->Ala enzyme suggest that the role of Arg-243 in the wild-type enzyme is predominantly electrostatic in nature.  相似文献   

16.
Escherichia coli fructose-1,6-bisphosphatase has been purified for the first time, using a clone containing an approximately 50-fold increased amount of the enzyme. The procedure includes chromatography in phosphocellulose followed by substrate elution and gel filtration. The enzyme has a subunit molecular weight of approximately 40,000 and in nondenaturing conditions is present in several aggregated forms in which the tetramer seems to predominate at low enzyme concentrations. Fructose bisphosphatase activity is specific for fructose 1,6-bisphosphate (Km of approximately 5 microM), shows inhibition by substrate above 0.05 mM, requires Mg2+ for catalysis, and has a maximum of activity around pH 7.5. The enzyme is susceptible to strong inhibition by AMP (50% inhibition around 15 microM). Phosphoenolpyruvate is a moderate inhibitor but was able to block the inhibition by AMP and may play an important role in the regulation of fructose bisphosphatase activity in vivo. Fructose 2,6-bisphosphate did not affect the rate of reaction.  相似文献   

17.
Lys-356 has been implicated as a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Li, L., Lin, K., Correia, J., and Pilkis, S. J. (1992) J. Biol. Chem. 267, 16669-16675). To ascertain whether the three other basic residues (Arg-352, Arg-358, and Arg-360), which are located in a surface loop (residues 331-362) which contains Lys-356, are important in substrate binding, these arginyl residues were mutated to Ala, and each arginyl mutant was expressed in Escherichia coli and purified to homogeneity. The far UV circular dichroism spectra of the mutants were identical to that of the wild-type enzyme. The kinetic parameters of 6-phosphofructo-2-kinase of the mutants revealed only small changes. However, the Km for fructose 2,6-bisphosphate, Ki for fructose 6-phosphate, and Ka for inorganic phosphate of fructose-2,6-bisphosphatase for Arg352Ala were, respectively, 2,800-, 4,500-, and 1,500-fold higher than those for the wild-type enzyme, whereas there was no change in the maximal velocity or the Ki for inorganic phosphate. The Km for fructose 2,6-bisphosphate and Ki for inorganic phosphate of Arg360Ala were 10- and 12-fold higher, respectively, than those of the wild-type enzyme, whereas the maximal velocity and Ki for fructose 6-phosphate were unchanged. In addition, substrate inhibition was not observed with Arg352Ala and greatly reduced with Arg360Ala. The properties of the Arg358Ala mutant were identical to those of the wild-type enzyme. The results demonstrate that in addition to Lys-356, Arg-352 is another critical residue in fructose-2,6-bisphosphatase for binding the C-6 phospho group of fructose 2,6-bisphosphate and that Arg-360 binds the C-2 phospho group of fructose 2,6-bisphosphate in the phosphoenzyme.fructose 2,6-bisphosphate complex. The results also provide support for Arg-352, Lys-356, and Arg-360 constituting a specificity pocket for fructose-2,6-bisphosphatase.  相似文献   

18.
Selective treatment of pig kidney fructose 1,6-bisphosphatase with cyanate leads to the formation of an active carbamoylated derivative that shows no cooperative interaction between the AMP-binding sites, but completely retains the sensitivity to the inhibitor. By an exhaustive carbamoylation of the enzyme a derivative is formed that has a complete loss of cooperativity and a decrease of sensitivity to AMP. It was proposed that the observed changes of allosteric properties were due to the chemical modification of two lysine residues per enzyme subunit [Slebe et al. (1983), J. Protein Chem. 2, 437–443]. Studies of the temperature dependence of AMP sensitivity and the interaction with Cibacron Blue Sepharose of carbamoylated fructose 1,6-bisphosphatase derivatives indicate that the lysine residue involved in AMP sensitivity is located at the allosteric AMP site, while the lysine residue involved in AMP cooperativity is at a distinct location. Using [14C]cyanate, we identified both lysine residues in the primary structure of the enzyme; Lys50 is essential for AMP cooperativity and Lys112 appears to be the reactive residue involved in the AMP sensitivity. According to the fructose 1,6-bisphosphatase crystal structure, Lys50 is strategically positioned at the C1–C2 interface, near the molecular center of the tetramer, and Lys112 is in the AMP-binding site. The results reported here, combined with the structural data of the enzyme, strongly suggest that the C1ndash;C2 interface is critical for the propagation of the allosteric signal among the AMP sites on different subunits.  相似文献   

19.
Previous covalent modification studies showed that tyrosine 114 of Escherichia coli ADP-glucose synthetase is involved in substrate binding (Lee, Y. M., and Preiss, J. (1986) J. Biol. Chem. 261, 1058-1064). We have prepared, via site-directed mutagenesis, an E. coli ADP-glucose synthetase variant (Phe114) containing a Tyr114 to Phe substitution in order to test whether the phenolic hydroxyl group plays a critical role in catalysis. Kinetic characterization of Phe114 ADP-glucose synthetase indicates that the Tyr114 hydroxyl is not obligatory for the enzyme catalysis. However, the variant enzyme showed altered properties. It showed a decreased apparent affinity for the substrates. The variant enzyme showed less than 2-fold activation by 5 mM fructose 1,6-bisphosphate in the ADP-glucose synthesis direction. In contrast, in the pyrophosphorolysis direction, the mutant enzyme showed about a 30-fold activation by 5 mM fructose 1,6-bisphosphate. The variant enzyme is heat-labile compared to wild type enzyme. It lost about 60% enzyme activity on incubation at 65 degrees C for 5 min in the presence of 30 mM Pi. The wild type enzyme is stable under these conditions. The results indicate that tyrosine 114 is involved directly or indirectly in enzyme catalysis, but is not obligatory for the enzyme catalysis. Conversion of Tyr114 to Phe also alters the regulatory properties of the enzyme with respect to activation by fructose-1,6-P2 and inhibition by AMP.  相似文献   

20.
A highly constrained pseudo-tetrapeptide (OC252-324) further defines a new allosteric binding site located near the center of fructose-1,6-bisphosphatase. In a crystal structure, pairs of inhibitory molecules bind to opposite faces of the enzyme tetramer. Each ligand molecule is in contact with three of four subunits of the tetramer, hydrogen bonding with the side chain of Asp187 and the backbone carbonyl of residue 71, and electrostatically interacting with the backbone carbonyl of residue 51. The ligated complex adopts a quaternary structure between the canonical R- and T-states of fructose-1,6-bisphosphatase, and yet a dynamic loop essential for catalysis (residues 52-72) is in a conformation identical to that of the T-state enzyme. Inhibition by the pseudo-tetrapeptide is cooperative (Hill coefficient of 2), synergistic with both AMP and fructose 2,6-bisphosphate, noncompetitive with respect to Mg2+, and uncompetitive with respect to fructose 1,6-bisphosphate. The ligand dramatically lowers the concentration at which substrate inhibition dominates the kinetics of fructose-1,6-bisphosphatase. Elevated substrate concentrations employed in kinetic screens may have facilitated the discovery of this uncompetitive inhibitor. Moreover, the inhibitor could mimic an unknown natural effector of fructose-1,6-bisphosphatase, as it interacts strongly with a conserved residue of undetermined functional significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号