首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The effect of glucocorticoids on polyamine metabolism has been elucidated further by measuring putrescine, spermidine, and spermine levels as well as ornithine decarboxylase, S-adenosylmethionine decarboxylase, and N1-acetylspermidine transferase activities in the hippocampus, cerebellar cortex, vermis, and deep nuclei of adrenalectomized rats. At 6 h after corticosterone or dexamethasone administration, the specific activities of ornithine decarboxylase and N1-acetylspermidine transferase showed the greatest increases in all brain tissues examined, and at 12 h, S-adenosylmethionine decarboxylase activity was not increased significantly. The hippocampus and cerebellar regions displayed different responses to corticosterone and dexamethasone, corresponding to the distribution of glucocorticoid and mineralocorticoid receptors. Corticosterone and dexamethasone increased ornithine decarboxylase and N1-acetylspermidine transferase activities in a dose-dependent manner, with dexamethasone being more active than corticosterone in all tissues. However, estradiol, progesterone, testosterone, and aldosterone were only active at doses greater than 5 mg/kg. The great increases in ornithine decarboxylase and N1-acetylspermidine transferase activities were accompanied by a marked increase in putrescine level and a small decrease in spermidine level. Our data confirm that the hippocampus and cerebellum are glucocorticoid target tissues and suggest that the increase in the content of putrescine, following acute treatment with glucocorticoids, is dependent on ornithine decarboxylase as well as N1-acetylspermidine transferase induction.  相似文献   

2.
Characterization of glucocorticoid receptor in HeLa-S3 cells   总被引:1,自引:0,他引:1  
H Hoschützky  O Pongs 《Biochemistry》1985,24(25):7348-7356
Glucocorticoid receptor of the human cell line HeLa-S3 has been characterized and has been compared to rat and to mouse glucocorticoid receptors. If HeLa cells were lysed in the absence of glucocorticoid, glucocorticoid receptor was isolated in a nonactivated form, which did not bind to DNA-cellulose. If HeLa cells were preincubated with glucocorticoid, glucocorticoid receptor was isolated in an activated, DNA-binding form. HeLa cell glucocorticoid receptor bound [3H]triamcinolone acetonide with a dissociation constant (KD = 1.3 nM at 0 degrees C) that was similar to those of mouse and rat glucocorticoid receptors. Similarly, the relative binding affinities for steroid hormones decreased in the order of triamcinolone acetonide greater than dexamethasone greater than promegestone greater than methyltrienolone greater than aldosterone greater than or equal to moxestrol. Nonactivated and activated receptors were characterized by high-resolution anion-exchange chromatography (FPLC), DNA-cellulose chromatography, and sucrose gradient centrifugation. Human, mouse, and rat nonactivated glucocorticoid receptors had very similar ionic and sedimentation properties. Activated glucocorticoid receptors were eluted at similar salt concentrations from DNA-cellulose columns but at different salt concentrations from the FPLC column. A monoclonal mouse anti-rat liver glucocorticoid receptor antibody [Westphal, H.M., Mugele, K., Beato, M., & Gehring, U. (1984) EMBO J. 3, 1493-1498] did not cross-react with HeLa cell glucocorticoid receptor. Glucocorticoid receptors of HeLa, HTC, and S49.1 cells were affinity labeled with [3H]dexamethasone and with [3H]dexamethasone 21-mesylate. The molecular weights of [3H]dexamethasone 21-mesylate labeled glucocorticoid receptors (MT 96 000 +/- 1000) were undistinguishable by polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
5.
Glucocorticoids are known to play a role in the maturation of the exocrine pancreas. The exact mechanism of glucocorticoid action in pancreatic ontogeny is, however, not clear. The present study characterized and quantitated the binding of [3H]dexamethasone to cytosol fractions from pancreata of rats at various ages. Trunk blood samples from these rats were also checked for levels of free and bound corticosterone. Specific and saturable bindings for dexamethasone were found in pancreatic cytosol fractions from newborn suckling and adult rats. Competition studies showed a preference for steroids with glucocorticoid activity. Specific binding was relatively low in pancreatic cytosol from newly born and 1-day old pups. A significant rise was seen after day 15. Cytosolic binding capacities were greatest from pancreata obtained from pups at weaning (3rd to 5th weeks). Values then declined toward the adult level. Scatchard analysis revealed a single class of binding sites with a dissociation constant (Kd) of 7.3 (+/- 1.1) X 10(-8) M and number of binding sites equalled to 1.29 (+/- 0.18) X 10(-13) mole/mg of cytosolic protein in adult rat pancreas. Pancreata from 25- and 15-day old rats had Kds of 3.4 (+/- 0.8) X 10(-8) M and 2.7 (+/- 0.7) X 10(-8) M with the number of binding sites equal to 1.77 (+/- 0.21) X 10(-13) mole/mg protein and 1.31 (+/- 0.16) X 10(-13) mole/mg protein respectively. Total plasma corticosterone concentration was low before day 10. It rose significantly by day 15, peaked at day 25, and then declined after weaning. About 5-15% of corticosterone during weaning and about 20-30% before and after weaning were in the free form. The peak level of dexamethasone binding corresponded to an increase in the plasma corticosterone level during weaning. This suggests a close relationship between plasma corticosterone levels and pancreatic glucocorticoid receptors. Both may, therefore, play a role in pancreatic development in the rat.  相似文献   

6.
Steroid hormones have been shown to modulate a number of physiological processes in addition to their potent antiinflammatory effects. Endothelin (ET) is a newly discovered vasoconstrictor that is synthesized and released by endothelial cells and acts on adjacent vascular smooth muscle cells by interacting with specific cell surface receptors. Proinflammatory agents such as thrombin and transforming growth factor beta have been shown to up-regulate ET gene expression in vascular endothelial cells. We wondered whether the anti-inflammatory steroids might have any regulatory effect on the ET receptors present in the vascular smooth muscle cells. Rat vascular smooth muscle cells (A-10 cell line, ATCC.CRL 1476) were used as a model system to study the effects of glucocorticoids on ET receptor expression and function. These cells display high density and high affinity ET receptors that belong to the ETA subtype. Pretreatment of these cells with dexamethasone reduced the number of ET receptors by 50-60% without changing the affinity. Of the steroids tested, dexamethasone was most effective followed by prednisolone and hydrocortisone. Aldosterone, a mineralocorticoid, was 5000-fold less potent than dexamethasone. This effect of dexamethasone was dependent on the time of pretreatment and concentration of the steroid used. This down-regulation of ET receptors was also accompanied by an attenuated response to ET-1 in dexamethasone-pretreated cells. The inhibitory effect of dexamethasone was selective for ET receptors because the vasopressin-mediated response was unaffected. In addition, dexamethasone pretreatment of these cells resulted in 50-60% reduction in the steady-state level of ETA receptor mRNA as revealed by Northern analysis. These results suggest that glucocorticoid pretreatment of smooth muscle cells resulted in the down-regulation of the ETA receptor at the mRNA level.  相似文献   

7.
8.
The presence of glucocorticoid receptors (GR) in rat liver nuclei over a 24 h time period following hyperthermic stress at 41 degrees C was immunocytologically studied using unfixed nuclear smears. Liver nuclei in unstressed animals were found to be immunonegative for GR. However, intense GR immunopositivity followed by a subsequent gradual decrease in receptor levels was observed in the nuclei of test animals during the first 2 h after stress. This stress-related increase in the receptor nuclear level was greater than the increase seen after dexamethasone administration. These results suggest that hyperthermic stress could potentiate the hormonal stimulation of receptor nuclear translocation.  相似文献   

9.
The distribution and properties of cytoplasmic binding sites for the synthetic glucocorticoid dexamethasone and the natural glucocorticoid corticosterone in the brain and the pituitary were studied in detail. Cortisol-17 beta acid, a derivative which does not bind to the glucocorticoid receptor but is a competitor of corticosterone binding to plasma, was used to overcome plasma interference. In vitro competition assays in the presence of excess cortisol acid reveal that dexamethasone is as effective a competitor for [3H]corticosterone binding as corticosterone itself. Scatchard analysis of equilibrium experiments with both steroids, using cytosol from various brain areas and from the pituitary yielded linear plots, suggesting one class of binding sites. The quantitative distribution of the sites follows the pattern: cortex greater than hippocampus greater than or equal to pituitary greater than hypothalamus greater than brain stem white matter. Furthermore, kinetic analysis of corticosterone dissociation showed a first order reaction, thus indicating the presence of one type of receptor in all brain areas examined. Rat brain cytosolic receptors for corticosterone and dexamethasone elute from DEAE-Sephadex A-50 anion exchange columns at 0.3 M NaCl in the presence of stabilizing sodium molybdate and at 0.15 M NaCl and/or in the buffer wash when heat-activated, thus exhibiting the characteristic activation pattern of rat liver cytosolic glucocorticoid receptor. The ratio of the buffer wash to the 0.15 M NaCl form is low for dexamethasone and very high for corticosterone. Receptor complexes from various brain parts showed the same activation pattern. In our experiments, brain corticosterone and dexamethasone receptors stabilized by sodium molybdate are indistinguishable by a number of techniques, thus indicating that it is unnecessary to evoke specific binding sites for each glucocorticoid.  相似文献   

10.
Regulation of rat hepatic cytosolic glucocorticoid receptors was studied using our newly developed exchange assay. Injecting 1 mg of dexamethasone or corticosterone into 150-250 g adrenalectomized rats caused a rapid decline in glucocorticoid receptor binding. Glucocorticoid receptor levels were depressed 80-90% in less than 15 min after hormone treatment, and remained low for about 24-48 h after glucocorticoid administration. 80-90% of glucocorticoid receptor binding was regenerated by 48 h, and complete binding was recovered by 72 h. Regenerated glucocorticoid receptor binding (48-72 h after first hormone injection) could be re-depressed by a second injection of the hormone. Similar results were obtained using normal (intact) rats. Optimum induction of tyrosine aminotransferase activity was obtained within 2 h following the first hormonal injection. Induction of tyrosine aminotransferase activity (measured 2 h after a second injection of the glucocorticoid) correlated with glucocorticoid receptor levels. Thus, 1 mg of dexamethasone or corticosterone greatly enhanced the liver tyrosine aminotransferase activity in the adrenalectomized rats (not previously hormone treated) and in adrenalectomized rats previously injected (48-72 h) with 1 mg of the glucocorticoid hormone. Enhancement of tyrosine aminotransferase activity was lowest 16-24 h after the first hormone injection (when receptor levels were extremely low). These results indicate that the induction of liver tyrosine aminotransferase activity by glucocorticoid hormones is correlated with cytosolic glucocorticoid receptor levels.  相似文献   

11.
The role of glucocorticoids and second messenger systems in the regulation of the vasopressin (VP) gene was studied in the human small cell lung carcinoma cell line GLC-8. Small cell lung carcinoma GLC-8 cells express VP mRNA and contain both glucocorticoid and mineralocorticoid receptors. Treatment with the synthetic glucocorticoid dexamethasone when added alone at 10(-8) M had no effect on the VP mRNA level and decreased the level by 30% at 10(-6) M. However, the effect of dexamethasone changed to positive when cells were simultaneously treated with cAMP-enhancing agents. VP mRNA levels, which were elevated by 1.5- to 2-fold by the cAMP-enhancing agents alone, increased a further 1.5- to 3-fold by dexamethasone. Thus, the combined effect of dexamethasone and cAMP stimulation was a 3- to 7.5-fold increase in VP mRNA levels. Long term treatment with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) reduced the VP mRNA level by 75%. The TPA-suppressed VP mRNA levels could be up-regulated about 6-fold by simultaneous treatment with 8-bromo-cAMP. Dexamethasone did not alter the TPA-suppressed VP mRNA levels. These results indicate that both cAMP and protein kinase-C pathways as well as glucocorticoid receptors are involved in the regulation of VP mRNA levels and that these factors interact. This leads to a negative or positive response of VP gene expression to glucocorticoids in a state-dependent manner. The interactions may be of significance in a physiological context and relate to the different regulation of VP-expressing systems in the brain.  相似文献   

12.
This study was conducted to investigate if the injection of a single dose of dexamethasone may cause disruption of adult female rat gonadal function in terms of plasma and ovarian level of both androgen and estrogen, ovarian morphology, and changes in localization of androgen, estrogen and glucocorticoid receptors. Adult female Long Evans rats (n=50, 250-300 g) were used. At day 0 rats received subcutaneously 1 ml of saline (n=25; control group) or dexamethasone at 0.1 mg/kg (n=25, treated group). Rats were sacrificed in groups of five on days 10, 15, 20, 25 and 30 after injection. Blood samples and one ovary were collected to analyze dexamethasone, 17beta-estradiol (E2), testosterone (T) and androstenedione (A4) concentrations by amplified EIA. The remaining ovary was removed and processed for histopathology and immunocytochemistry. Differences between individual means were analyzed by Pairwise t-test and Bonferroni post test to asses whether values presented statistical significance. Increased E2, T and A4 levels were observed both in plasma and ovary samples in treated group when comparing with control (p< 0.01) at all days post-injection even when dexamethasone was undetectable. Ovarian morphology of treated group showed features compatible with female infertility. Inmmunolocalization of androgen and estrogen receptors showed that both were negative in treated group while controls showed highest positivity (AR +++, ER ++). Glucocorticoid receptor showed higher positivity in dexamethasone treated rats (GR ++) than in controls (GR +). Obtained results showed clear evidence that a single dose of dexamethasone may disrupt gonadal function in rats, and that possibly leads to infertility.  相似文献   

13.
The regulation of angiotensinogen gene expression in response to adrenalectomy and dexamethasone treatment was examined in multiple rat tissues. Angiotensinogen mRNA as quantitated by slot blot hybridization utilizing an angiotensinogen cRNA probe was most abundant in the liver with levels in the brain, kidney, and adrenal of 50, 25, and 10%, respectively. No angiotensinogen mRNA was detected in testes or heart. Although no change in the quantity of angiotensinogen mRNA was found following adrenalectomy and maintenance on 0.9% saline, dexamethasone treatment of both normal and adrenalectomized rats resulted in a time-dependent and tissue-specific accumulation of angiotensinogen mRNA. In normal animals, the hepatic response to treatment was a 4.5-fold increase in angiotensinogen mRNA by 8 h which remained 2.4-fold above basal levels by 24 h. Angiotensinogen mRNA levels in the brains of normal rats treated with dexamethasone increased only 60% by 6 h and returned to basal levels by 24 h. In contrast to the increases seen in brain and liver, angiotensinogen mRNA derived from kidney did not significantly change following dexamethasone treatment. In adrenalectomized animals, the hepatic response to dexamethasone was similar to normal animals with a 3.7-fold increase by 6 h. The accumulation in brain was greater in these animals compared to normals and increased 3-fold by 8 h. Finally, dexamethasone did not significantly increase levels in the kidney. These results clearly demonstrate glucocorticoid regulation of angiotensinogen mRNA levels in liver and brain. In contrast, the kidney, an organ known to contain glucocorticoid receptors, does not respond with increased angiotensinogen mRNA levels following glucocorticoid stimulation. These studies provide the first evidence for tissue-specific differences in the control of angiotensinogen mRNA.  相似文献   

14.
The objective of this study was to determine whether in female rat liver any relationship existed between prolactin and glucocorticoid receptors after hormonal manipulation. Bromocryptine (CB-154) treatment of adult SD female rats (80-100 days old) for 48 h decreased prolactin binding to hepatic membranes 49% and dexamethasone binding in hepatic cytosol 40% below control values. Administration of rat prolactin along with bromocriptine prevented these changes. In another study, prolactin binding to hepatic membranes increased 53% and dexamethasone binding in hepatic cytosol increased 113% above sham-control values, 3 days after adrenalectomy. On the other hand, hydrocortisone treatment of sham-operated rats reduced prolactin binding by 57% and dexamethasone binding by 76%. Scatchard analyses of the prolactin or dexamethasone binding data indicated that these manipulations changed the number of prolactin or dexamethasone binding sites rather than their apparent affinity constants. In vitro treatment of rat whole liver homogenate with various doses (10(-9) - 10(-5) M) of dexamethasone and corticosterone for 15 min at 22 degrees C resulted in a dose-dependent decrease in prolactin binding activity. However, direct addition of dexamethasone to a hepatic 15 000 X g to 100 000 X g membrane preparation exhibited no significant effects on prolactin binding. In conclusion, these studies show that (a) there is a parallel in vivo modulation of rat liver prolactin and glucocorticoid receptors under various experimental conditions and (b) in vitro exposure of whole liver homogenate to glucocorticoids inhibits the prolactin binding activity.  相似文献   

15.
Using Chromosorb chromatography and HPLC, we measured the plasma concentrations of RU 486, and its monodemethylated (RU 42633), didemethylated (RU 42848) and alcoholic nondemethylated (RU 42698) metabolites up to 72 h following oral ingestion of 100 mg of RU 486 by five female volunteers. The peak plasma level of RU 486 (4.5 mumol/l) occurred within 1 h after ingestion of the compound; at this point significant amounts of the metabolites were also present in the plasma. After the initial redistribution within 6 h the plasma concentrations of RU 486 and three of its metabolites measured remained stable for 24 h. Concentrations of the monodomethylated metabolite exceeded those of the parent steroid during the time period measured, whereas the concentrations of the didemethylated and alcoholic metabolites were lower than those of RU 486, but still notable. At 72 h the concentrations of all the four steroids were still in the micromolar range. The relative binding affinities of these metabolites to human endometrial and myometrial progesterone receptors as well as to human placental glucocorticoid receptors were determined in vitro. The affinity of RU 486 for the human uterine progesterone receptor (Kd = 1.3 X 10(-9) M for RU 486) was higher than that of progesterone but lower than that of ORG-2058, a potent synthetic progestin. The relative binding affinities of the monodemethylated, alcoholic and didemethylated metabolites to the progesterone receptor were 21, 15 and 9%, respectively, compared with the parent compound RU 486; each was lower than that of progesterone (43%). RU 486 had an approx. 4-fold higher relative binding affinity to the glucocorticoid receptor than dexamethasone. Interestingly, the relative binding affinities of the metabolites studied to the human glucocorticoid receptor exceeded those of dexamethasone or cortisol. Compared with the parent compound RU 486, they were 61, 48 and 45% for the monodemethylated, alcoholic and didemethylated metabolites, respectively; each was higher than that of dexamethasone (23%). The affinity of dexamethasone to the human glucocorticoid receptor was 1.6 X 10(-9) M. These data indicate that the pool of certain metabolites of RU 486 may contribute to a significant extent to the antiprogestagenic (23-33%) and even greater extent to the antiglucocorticoid (47-61%) effects of RU 486.  相似文献   

16.
31P NMR has been used to study the effects of dexamethasone on phosphorus metabolism in one dexamethasone (dex)-sensitive (CEM-C7) and three different dex-resistant (CEM-C1, CEM-4R4, and CEM-ICR27) human leukemic cell lines. The use of these cell lines, containing widely varying amounts of glucocorticoid receptors, made it possible to evaluate the receptor-mediated contributions to the modes of action of dexamethasone in these cells. To evaluate the effects of dexamethasone without any significant contribution from experimental conditions, all the experiments were done with parallel controls. Results obtained showed: (1) significantly different levels of phosphorylethanolamine (PE) and phosphorylcholine (PC) among cell lines, suggesting significant differences in phospholipid metabolism; (2) the dexamethasone induced reduction of phosphomonoester (PE + PC), ATP, and metabolic rates probably through glucocorticoid receptor mediated mechanisms; (3) the dexamethasone induced stimulation of cellular metabolism in a process which seems to be independent of glucocorticoid receptors; and (4) the dexamethasone induced alkaline shift of intracellular pH in all the cell lines except ICR27. The reduction in PME levels seems to be an earlier step in dexamethasone-induced apoptosis than the reduction in ATP. The degree of alkaline shift was found to correlate with the number of glucocorticoid receptors present. The possible involvement of phospholipid metabolites as second messengers in dexamethasone-induced apoptosis is discussed. © 1994 Wiley-Liss, Inc.  相似文献   

17.
While chronic glucocorticoid treatment increases pituitary growth hormone (GH) content in rats and primates and increases pituitary GH release in response to growth hormone-releasing hormone (GHRH) in rats, it also inhibits somatic growth. We investigated these opposite actions in rats using the synthetic glucocorticoid dexamethasone. Seven days of dexamethasone treatment (40 micrograms/animal per day) did not alter the frequency of spontaneous GH pulses in conscious, freely-moving animals. The amplitude of the GH pulses in saline and dexamethasone-treated rats was different (P less than 0.01), the latter group having a higher incidence of GH levels less than 95 ng/ml, a lower incidence of GH levels between 96 and 251 ng/ml, and a higher incidence of GH values greater than 480 ng/ml. A 20 microgram/kg per day dose of dexamethasone was sufficient to significantly inhibit growth but was inadequate in enhancing the GH response to an acute injection of GHRH in anesthetized animals. These results support the concept that glucocorticoids exert their catabolic effects on somatic growth in peripheral tissues and not at the pituitary level.  相似文献   

18.
To investigate the possible use of electrophilic affinity labelling for the characterization of glucocorticoid receptors, different chemically reactive derivatives of deoxycorticosterone (deoxycorticosterone 21-mesylate and deoxycorticosterone 21-(1-imidazole) carboxylate), dexamethasone (dexamethasone 21-mesylate, dexamethasone 21-iodoacetate and dexamethasone 21-bromoacetate) and progesterone (21-chloro progesterone) were tested for their ability to bind irreversibly to the glucocorticoid receptor from goat lactating mammary gland. Using partially purified receptor, only one of the steroids tested, dexamethasone 21-mesylate (DXM-M) was found more effective than dexamethasone (DXM) in preventing exchange of radioactive dexamethasone in the receptor binding site. The affinity of DXM-M for the glucocorticoid receptor, measured by competitive binding assay, was 1/15 that of DXM. Polyacrylamide gel electrophoresis in sodium dodecyl sulphate of the [3H]-DXM-M labeled glucocorticoid receptor revealed a specific covalently radiolabeled fraction corresponding to an apparent molecular weight of 75,000 to 80,000. The biological activity of DXM-M was studied in RPMI 3460-clone 6 Syrian hamster melanoma cells, a cell line which is sensitive to growth inhibition by glucocorticoids. Like DXM, DXM-M inhibits the growth of RPMI 3460-clone 6 cells and it acts as a slowly reversible glucocorticoid agonist at concentrations which correlate with the affinity of DXM-M for the glucocorticoid receptor in vitro.  相似文献   

19.
G Shyamala 《Biochemistry》1975,14(2):437-444
The specific interaction of glucocorticoids with nuclei of mouse mammary tumor was studied in vitro by incubation of the tissue with [3H]dexamethasone at 25 degrees. It was demonstrated that the mammary tumors contain a limited number of specific nuclear binding sites which were saturated with low hormone concentrations (10-8 M)9 The concentrations of specific binding sites in the nuclei were related to the concentration of cytoplasmic binding sites of unincubated tissues and varied between individual tumors. The binding component in the nuclei appeared to be a protein and was easily solubilized with 0.4 M KCl containing buffers. The ability of various corticoids to block the nuclear localization of the steroid correlated well with their glucocorticoid potency. Estradiol and progesterone at concentrations of 10-6 M were also effective in competing for the glucocorticoid receptor binding sites. However, while the glucocorticoids such as hydrocortisone and corticosterone translocated to nuclear sites also specific for dexamethasone, estradiol and progesterone competed for the cytoplasmic binding sites and did not translocate to the nucleus. The possible significance of the interaction of various steroids with the glucocorticoid receptors in mammary tumors is discussed.  相似文献   

20.
Studies were made on changes in the contents of alpha-amylase (EC 3.2.1.1) in the pancreas and parotid gland of rats during postnatal development, on the premature induction of this enzyme by hormones and on the existence of specific glucocorticoid receptors in these tissues. The amylase content in the pancreas increased from the 9th day after birth and reached the adult level on the 28th day, its content in the parotid gland increased rapidly from the 16th to the 28th day after birth and then rose more gradually to the adult level. Injection of dexamethasone into rats 6--8 days after birth induced increase in the amylase of the pancreas but not the parotid gland. However, injection of dexamethasone into weanling rats 21--23 days after birth resulted in precocious induction of amylase in both tissues. Specific glucocorticoid receptors were detectable in the parotid gland of rats from 6 days after birth but were almost undetectable in the pancreas until adolescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号