共查询到20条相似文献,搜索用时 199 毫秒
1.
A process was explored for continuous enzymatic liquefaction of corn starch at high concentration and subsequently saccharification to glucose. The process appears to be quite efficient for conversion of starch to glucose and enzymatic liquefaction and should be readily adaptable to industrial fermentation processes. Preliminary work indicated that milled corn or other cereal grains also can be suitably converted by such a process. Essentially, the process involved incorporation of a thermostable, bacterial alpha-amylase for liquefaction and, subsequently, of a glucoamylase into the continuous mixer under conditions conductive to rapid enzymatic hydrolyses. Also studied was the effect on substrate liquefaction of variable such as starch concentration (40-70 degrees ), level of alpha-amylase (0.14-0.4%, dry starch basis), temperature (70-100 degrees C), pH (5.8-7.1), and residence time (6 and 12 min). The degree of liquefaction was assessed by determining (1) the Brookfield viscosity, (2) the amount of reducing groups, and (3) the rate and extent of glucose formed after glucoamylase treatment. Best liquefaction process conditions were achieved by using 50-60% starch concentration, at 95 degrees C, with 0.4% alpha-amylase, and a 6-min residence period in the mixture. Under these conditions, rate and extents of glucose obtained after glucoamylase treatment approached those obtained in longer laboratory batch liquefactions. The amount of glucose formed in 24h with the use of 0.4% glucoamylase was 86% of theory after a 6-min continuous liquefaction, compared to 90% for a 30-min laboratory batch liquefaction (95 degrees C, 0.4% alpha-amylase). 相似文献
2.
Enzymatic corn starch liquefaction with alpha-amylase was carried out. Molecular weight distributions of the resulting hydrolysates are presented using aqueous size exclusion chromatographic techniques. It is demonstrated that despite the fact that the enzyme employed reacts in a random endoacting manner, the product distributions are nonrandom. The results are explained in part by a multimerization process whereby the polymeric substrate molecules preferentially associate, forming intermolecular aggregates. These aggregates are either a consequence of the manner in which the material is deposited into the native granular structure of starch or due to intrinsic physical chemical properties of the polysaccharide. In the latter case, the results are shown to correspond to known multimerized amylose, although complete characterization of the polysaccharide is currently not available. The results presented are used to develop a simplified kinetic model of starch liquefaction and shown to simulate the product distributions accurately. 相似文献
3.
A continuous process involving simultaneous saccharification and fermentation of liquefied starch has been developed using Zymomonas mobilis. Amyloglucosidase retention and cell recycle have been effected by using an Amicon hollow-fiber membrane system with a MW cutoff of 5000. Relatively high productivities of up to 60 g L(-1) h(-1) have been achieved at ethanol concentrations of 60-65 g/L. The system also offers the potential for reduced enzyme requirements for saccharification. 相似文献
4.
A new approach for the determination of the botanical origin of starch is presented based on the formation of starch-triiodide complexes. The starch samples were extracted from wheat (Srpanjka), potato, maize, rye (Barun), barley (Conduct), rice, tapioca and a commercial modified starch. The amylose/amylopectin ratios of starches, among various other properties, differ between starches of different botanical origins. Triiodide ions bind characteristically to the amylose and amylopectin of the starch depending on the starch's origin. The new technique includes direct potentiometric measurements of the response of free triiodide ions in starch-triiodide solutions where the data is analysed by principal component analysis (PCA). PCA gave graphical results for statistical differentiation between starches of different botanical origins. 相似文献
5.
Asok Mukhopadhyay 《Biotechnology Techniques》1992,6(6):507-510
Summary The half-life of alpha amylase has been determined in consideration with the stabilizing effect of starch (30% w/v). Initially,
enzyme of known activity was taken. During starch liquefaction, the residual activity of enzyme was estimated interms of its’
reducing power. 相似文献
6.
A sulfuric acid-free ethanol cooking (SFEC) treatment was developed to achieve complete saccharification of the cellulosic component of eucalyptus and baggase flour, thereby avoiding the problems associated with the use of strong acid catalysts. Cutter-milled flours were exposed to an ethanol (EtOH)/water/acetic acid mixture in an autoclave. Enzymatic hydrolysis experiments of the pretreated samples demonstrated that almost complete conversion of the cellulosic components to glucose was achieved under optimal conditions. A large-scale trial revealed that there was little consumption of in-feed EtOH during SFEC; therefore, it is considered that most part EtOH used can be essentially recovered and reused. Field emission scanning electron microscopy showed that SFEC induced the formation of pores ranging in size from approximately 10 to several 100nm. It can be assumed that the porous surface was due to the partial removals of lignin and hemicellulose, which improved the accessibility of the enzyme onto the substrate. 相似文献
7.
Sriram Padmanabhan Jens Kallabinski M. Ramakrishna B. K. Lonsane M. M. Krishnaiah 《Biotechnology Techniques》1992,6(1):65-68
Summary Different commercial enzymes, used individually or in combination, released upto 96% starch from whole cassava chips with
pectinase I and cellulase combination. The enzymic action on macerating chips and disintegrating root cells was dependent
on size of chips, presence of peel, temperature, time, agitation and type as well as concentration of enzymes. Significantly
higher starch recovery and elimination of cost-intensive mechanical pulverization indicate potential of the enzymic technique. 相似文献
8.
本文利用国内140个红小豆种质资源,探究其抗性淀粉含量与蒸煮后硬度的地域分布特征,分析蒸煮后硬度与营养指标的相关性,同时筛选抗性淀粉含量高与蒸煮后硬度低的种质资源,结果表明:140份红小豆抗性淀粉的平均含量为14.25 %,蒸煮后硬度的平均值为150.72 g。吉林地区红小豆抗性淀粉含量最高,为15.71 %;内蒙古地区红小豆蒸煮后硬度最低,为96.42 g。抗性淀粉与总淀粉之间呈极显著负相关;蒸煮后硬度与抗性淀粉之间呈显著正相关,但与总淀粉及蛋白质之间无显著相关。筛选出12份抗性淀粉含量>17.83 %的优异红小豆种质资源,可用于糖尿病人专用品种的选育及产品开发;9份蒸煮后硬度<76.48 g的优异红小豆种质资源可用于豆饭、豆粥产品的开发。 相似文献
9.
Allen C. S. Yu Jacky F. C. Loo Samuel Yu S. K. Kong Ting-Fung Chan 《Applied microbiology and biotechnology》2014,98(2):855-862
A novel bacterial growth monitoring method using a tunable resistive pulse sensor (TRPS) system is introduced in this study for accurate and sensitive measurement of cell size and cell concentration simultaneously. Two model bacterial strains, Bacillus subtilis str.168 (BSU168) and Escherichia coli str.DH5α (DH5α), were chosen for benchmarking the growth-monitoring performance of the system. Results showed that the technique of TRPS is sensitive and accurate relative to widely used methods, with a lower detection limit of cell concentration measurement of 5?×?105 cells/ml; at the same time, the mean coefficient of variation from TRPS was within 2 %. The growth of BSU168 and DH5α in liquid cultures was studied by TRPS, optical density (OD), and colony plating. Compared to OD measurement, TRPS-measured concentration correlates better with colony plating (R?=?0.85 vs. R?=?0.72), which is often regarded as the gold standard of cell concentration determination. General agreement was also observed by comparing TRPS-derived cell volume measurements and those determined from microscopy. We have demonstrated that TRPS is a reliable method for bacterial growth monitoring, where the study of both cell volume and cell concentration are needed to provide further details about the physical aspects of cell dynamics in real time. 相似文献
10.
《Journal of Fermentation Technology》1987,65(5):531-535
To produce ethanol more economically than in a conventional process, it is necessary to attain high productivity and low production cost. To this end, a continuous ethanol production from sago starch using immobilized amylogucosidase (AMG) and Zymomonas mobilis cells was studied. Chitin was used for immobilization of AMG and Z. mobilis cells were immobilized in the form of sodium alginate beads. Ethanol was produced continuously in an simultaneous saccharification and ethanol fermentation (SSF) mode in a pacekd bed reactor. The maximum ethanol productivity based on the void volume, Vv, was 37 g/l/h with ethanol yield, Yp/s, 0.43 g/g (84% of the theoretical ethanol yield) in this system. The steady-state concentration of ethanol (46 g/l could be maintained in a stable manner over two weeks at the dilution rate of 0.46 h−. 相似文献
11.
A combined sulfuric acid-free ethanol cooking and pulverization process was developed in order to achieve the complete saccharification of the cellulosic component of woody biomass, thereby avoiding the problems associated with the use of strong acid catalysts. Eucalyptus wood chips were used as a raw material and exposed to an ethanol/water/acetic acid mixed solvent in an autoclave. This process can cause the fibrillation of wood chips. During the process, the production of furfural due to an excessive degradation of polysaccharide components was extremely low and delignification was insignificant. Therefore, the cooking process is regarded not as a delignification but as an activation of the original wood. Subsequently, the activated solid products were pulverized by ball-milling in order to improve their enzymatic digestibility. Enzymatic hydrolysis experiments demonstrated that the conversion of the cellulosic components into glucose attained 100% under optimal conditions. Wide-angle X-ray diffractometry and particle size distribution analysis revealed that the scale affecting the improvement of enzymatic digestibility ranged from 10 nm to 1 microm. Field emission scanning electron microscopy depicted that the sulfuric acid-free ethanol cooking induced a pore formation by the removal of part of the lignin and hemicellulose fractions in the size range from a few of tens nanometers to several hundred nanometers. 相似文献
12.
Hydrolytic enzymes involved in rotifer digestive processes were investigated directly at the sites of enzyme action using the ELF (Enzyme Labelled Fluorescence) technique. After enzymatic hydrolysis of an artificial ELF substrate, the fluorescent product ELF alcohol (ELFA) marked the sites of enzyme action. The time development of ELFA labelling was studied at different incubation times. Phosphatases, β-N-acetylhexosaminidases and lipases were examined in Brachionus angularis, B. calyciflorus, Keratella cochlearis and Lecane closterocerca from fed-batch cultures. We detected activities of all studied enzymes mostly in the stomach and intestine of rotifers. L. closterocerca was the only species showing enzyme activity at the mastax. Lipase activity was observed in the stomach and intestine of all species and in the mastax of L. closterocerca. Phosphatases were frequently located at the corona of B. calyciflorus. In other cases, both phosphatases and β-N-acetylhexosaminidases were rarely detected at the corona, and on the lorica and epidermis of some species. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont and R. Rico-Martínez Advances in Rotifer Research 相似文献
13.
The aim of this paper is to present a method which enables the recordings of cameras that are not equipped with a synchronisation system to be synchronised a posteriori. Using the Direct Linear Transformation technique, this method estimates the phase difference between two cameras by minimising the reconstruction errors of a moving point. Once the phase difference value is known, one of the recordings is chosen as a reference and the second one is synchronised to the first by cubic spline interpolation. 相似文献
14.
An enzymatic reaction using a liquid emulsion membrane technique was studied to investigate the effects of some experimental variables on the stability of liquid membrane, enzyme deactivation, and transport of substrates and products. The hydrolysis of L-phenylalanine methyl ester by alpha-chymotrypsin was selected as a model reaction system. First, a transport mechanism for the substrates and products across the membrane was qualitatively identified. Second, it was found that the pH of the internal phase was one of the most important variables to determine the enzyme activity in a liquid membrane. Third, the effect of membrane phase which consists of surfactant, carrier, and organic solvent on the emulsion stability was investigated. It was found that the properties of the organic solvents greatly affect the emulsion stability. For an optimum condition, it was possible to reuse the emulsion which consists of membrane phase and internal phase without further separation. It was finally concluded that the enzyme in a liquid membrane retained 60% of its native activity in spite of vigorous mixing during the emulsification step. 相似文献
15.
Using only wheat bran koji from the Rhizopus strain, raw cassava starch and cassava pellets converted reasonably well to alcohol (ethanol) without cooking at 35 degrees C and pH 4.5-5.0. When the initial broth contained 30 g raw cassava starch, 10 g Rhizopus sp. koji, and 100 mL tap water, 12.1 g of alcohol was recovered by final distillation from fermented broth. In this case, 12.1 g alcohol corresponds to an 85.5% conversion rate based on the theoretical values of the starch content. When the initial broth contained 40 g cassava starch, 14.1 g of alcohol was recovered, where 14.1 g corresponds to a 74.5% conversion rate. The alcoholic fermentation process described in the present work is considered more effective and reasonable than the process using raw starch without cooking reported until now, since the new process makes it unnecessary to add yeast cells and glucoamylase preparation. 相似文献
16.
《Journal of Fermentation and Bioengineering》1990,69(4):228-233
Direct ethanol production from raw starch was performed continuously using a combination of a reversibly soluble-autoprecipitating amylase (D-AS) in which Dabiase K-27 was immobilized covalently on an enteric coating polymer (hydroxypropyl methylcellulose acetate succinate, AS) as a carrier, and a flocculating yeast. Continuous production was carried out using a reactor equipped with a mixing vessel and a separation vessel. D-AS and the yeast were separated continuously from the product solution by self-sedimentation in the separation vessel and they were utilized repeatedly. In the continuous saccharification of raw starch by D-AS alone, the glucose productivity was about 3.6 g/l/h at a dilution rate (D) of 0.1 h−1. In the continuous ethanol production from raw starch by a combination of D-AS and flocculating yeast cells, high ethanol productivity up to 2.0 g/l/h was achieved at D=0.1 h−1. Although the enzymatic activity of D-AS is inactivated due to insolubilization of the enzyme by the accumulation of NaCl produced in controlling the pH in the reactor, it is possible to recover the D-AS enzymatic activity by removing the NaCl. This continuous fermentation system suggests a potential for effective ethanol production from raw starch, and it may be widely applicable in heterogeneous culture systems using solid substrates other than raw starch. 相似文献
17.
M. Satory M. Fürlinger D. Haltrich K.D. Kulbe F. Pittner B. Nidetzky 《Biotechnology letters》1997,19(12):1205-1208
Glucose-fructose oxidoreductase from Zymomonas mobilis catalyzed the oxidation of various aldose sugars to the corresponding aldonic acids. The enzyme was used for the selective and high-yield conversion of lactose to lactobionic acid in batch, fed-batch and continous reaction mode. A productivity of 110 g L d was obtained in an ultrafiltration membrane reactor, operated for 70 h. 相似文献
18.
Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline growth rings. 相似文献
19.
20.
A method for the rapid, sensitive, and specific determination of starch in plant tissues is described. Starch from a variety of plant tissues is solubilized by stirring for 24 h or by sonication for 40 min in dimethyl sulfoxide. Dilution of this extract to less than 20% dimethyl sulfoxide permits a nearly complete hydrolysis of the starch in less than 3 h with glucoamylase from Rhizopus niveus. Quantitation of liberated glucose by a coupled hexokinase and glucose-6-phosphate dehydrogenase method provides an additional degree of specificity. 相似文献