首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the leukemic macrophage cell-line THP-1, a fraction of the secreted matrix metalloproteinase 9 (MMP-9) is linked to the core protein of chondroitin sulfate proteoglycans (CSPG). Unlike the monomeric and homodimeric forms of MMP-9, the addition of exogenous CaCl2 to the proMMP-9/CSPG complex resulted in an active gelatinase due to the induction of an autocatalytic removal of the N-terminal prodomain. In addition, the MMP-9 was released from the CSPG through a process that appeared to be a stepwise truncation of both the CSPG core protein and a part of the C-terminal domain of the gelatinase. The calcium-induced activation and truncation of the MMP-9/CSPG complex was independent of the concentration of the complex, inhibited by the MMP inhibitors EDTA, 1,10-phenanthroline and TIMP-1, but not by general inhibitors of serine, thiol and acid proteinases. This indicated that the activation and truncation process was not due to a bimolecular reaction, but more likely an intramolecular reaction. The negatively charged chondroitin sulfate chains in the proteoglycan were not involved in this process. Other metal-containing compounds like amino-phenylmercuric acetate (APMA), NaCl, ZnCl2 and MgCl2 were not able to induce activation and truncation of the proMMP-9 in this heterodimer. On the contrary, APMA inhibited the calcium-induced process, whereas high concentrations of either MgCl2 or NaCl had no effect. Our results indicate that the interaction between the MMP-9 and the core protein of the CSPG was the causal factor in the calcium-induced activation and truncation of the gelatinase, and that this process was not due to a general electrostatic effect.  相似文献   

2.

Background

Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9) synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG) core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG.

Methodology/Principal Findings

By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3) in both control and PMA exposed cells.

Conclusions/Significance

The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.  相似文献   

3.
MMP-9 (matrix metalloproteinase 9) plays a critical role in tumour progression. Although the biochemical properties of the secreted form of proMMP-9 are well characterized, little is known about the function and activity of cell surface-associated proMMP-9. We purified a novel 82 kDa species of proMMP-9 from the plasma membrane of THP-1 leukaemic cells, which has substantial differences from the secreted 94 kDa proMMP-9. The 82 kDa form was not detected in the medium even upon stimulation with a phorbol ester. It is truncated by nine amino acid residues at its N-terminus, lacks O-linked oligosaccharides present in the 94 kDa proMMP-9, but retains N-linked carbohydrates. Incubation of 94 kDa proMMP-9 with MMP-3 generated the well-known 82 kDa active form, but the 82 kDa proMMP-9 was converted into an active species of 35 kDa, which was also produced by autocatalytic processing in the absence of activating enzymes. The activated 35 kDa MMP-9 efficiently degraded gelatins, native collagen type IV and fibronectin. The enzyme was less sensitive to TIMP-1 (tissue inhibitor of metalloproteinase 1) inhibition with IC50 values of 82 nM compared with 1 nM for the 82 kDa active MMP-9. The synthetic MMP inhibitor GM6001 blocked the activity of both enzymes, with similar IC50 values below 1 nM. The 82 kDa proMMP-9 is also produced in HL-60 and NB4 leukaemic cell lines as well as ex vivo leukaemic blast cells. It is, however, absent from neutrophils and mononuclear cells isolated from peripheral blood of healthy individuals. Thus, the 82 kDa proMMP-9 expressed on the surface of malignant cells may escape inhibition by natural TIMP-1, thereby facilitating cellular invasion in vivo.  相似文献   

4.
Abstract: The Alzheimer amyloid precursor (APP) protein is a member of a family of glycoproteins that includes the amyloid precursor-like proteins (APLPs). Previously, we showed that in C6 glioma cell cultures, secreted APP nexin II occurs as the core protein of a chondroitin sulfate proteoglycan (CSPG). Here, we report that among seven untransfected cell lines, expression of secreted APP CSPG was restricted to two cell lines of neural origin, namely, C6 glioma and Neuro-2a neuroblastoma (N2a) cells. Addition of dibutyryl cyclic AMP in N2a cultures, a treatment that induces the neuronal phenotype in these cells, resulted in a significant reduction in the amount of the secreted APP CSPG, although secretion of APP was only marginally affected. Growth in the presence of serum increased the size of the secreted APP CSPG, suggesting that the number and/or length of the chondroitin sulfate (CS) chains attached to the core APP varies with growth conditions. Extensive mapping with epitope-specific anti-bodies suggested that a CS chain is attached within or proximal to the Aβ sequence of APP. In contrast to the restricted expression of the APP CSPG, expression of secreted APLP2 CSPGs was observed in all cell lines examined. After chondroitinase treatment, two core proteins of ∼100 and 110 kDa were obtained that reacted with an APLP2-specific antiserum, suggesting that non-transfected cell lines contain at least two endogenous APLP2 CSPGs, probably derived by alternative splicing of the APLP2 KPI domain. The fraction of the APLP2 proteins in the CSPG form was dependent on the particular cell line examined. The proteoglycan nature of APP and APLP2 suggests that addition of the CS glycosaminoglycan chains is important for the implementation of the biological function of these proteins. However, the differential expression of these two proteoglycans suggests that their physiological roles and their possible involvement in Alzheimer's disease may differ.  相似文献   

5.
Proteoglycans of the human B lymphoblastoid cell line LICR-LON-HMy2 were metabolically labeled with [35S]sulfate. High-density fractions of 35S-labeled material separated by CsCl gradient ultracentrifugation were further purified by anion exchange chromatography and gel filtration. Two proteoglycans, isolated from cell lysates and culture supernatants, were characterized by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in combination with enzymatic degradation. Treatment with chondroitinase AC completely degraded the glycosaminoglycan moiety of the proteoglycans. Three to 4 chondroitin sulfate chains (average molecular mass = 26 kDa) were estimated for each of the two proteoglycans. Differences between the proteochondroitin sulfates (CSPG) were observed in the content of N-linked oligosaccharides. After chondroitinase AC treatment the resulting band in SDS-PAGE of the secreted CSPG was sensitive to treatment with endoglycosidase F (Endo F) which further reduced the molecular mass from 30 to 21.5 kDa, whereas the band of the cellular CSPG after chondroitinase AC treatment (molecular mass = 30 kDa) remained resistant to Endo F treatment. The composition of amino acids was different in the protein cores, suggesting differences in the primary structure. Both CSPG contained a high percentage of glycine and serine. For both CSPG a molecular mass of approximately 135 kDa was deduced from the hydrodynamic sizes of the glycosaminoglycan chains obtained after alkaline/borohydride treatment and the migration of the protein/oligosaccharide complexes in SDS-PAGE. 75% of all [35S]sulfate-labeled molecules were found in the culture supernatant and 25% in the cellular fraction. 35S-Labeled material in the culture supernatant consisted exclusively of intact CSPG, whereas 35S-Labeled molecules in the cellular preparation consisted largely of free chondroitin sulfate chains. Only 8.3% of the cellular material, isolated from the microsomal fraction, was intact CSPG. In pulse-chase experiments maximal secretion of CSPG was found after 4 h, comprising approximately 40% of totally synthesized CSPG. From these experiments we tentatively conclude that a small proportion of CSPG synthesized by LICR-LON-HMy2 cells is membrane-associated, a larger portion is secreted, and another portion is intracellularly degraded.  相似文献   

6.
We have previously demonstrated that the human placenta contains a uniquely low sulfated extracellular aggrecan family chondroitin sulfate proteoglycan (CSPG). This CSPG is a major receptor for the adherence of Plasmodium falciparum-infected red blood cells (IRBCs) in placentas, causing pregnancy-specific malaria. However, it is not known whether such low sulfated CSPGs occur in placentas of other animals and, if so, whether IRBCs bind to those CSPGs. In this study, we show that rat placenta contains a uniquely low sulfated extracellular CSPG bearing chondroitin sulfate (CS) chains, which comprise only approximately 2% 4-sulfated and the remainder nonsulfated disaccharides. Surprisingly, the core protein of the rat placental CSPG, unlike that of the human placental CSPG, is a spongiotrophoblast-specific protein (SSP), which is expressed in a pregnancy stage-dependent manner. The majority of rat placental SSP is present in the CSPG form, and only approximately 10% occurs without CS chain substitution. Of the total SSP-CSPG in rat placenta, approximately 57% is modified with a single CS chain, and approximately 43% carries two CS chains. These data together with the previous finding on human placental CSPG suggest that the expression of low sulfated CSPG is a common feature of animal placentas. Our data also show that the unique species-specific difference in the biology of the rat and human placentas is reflected in the occurrence of completely different CSPG core protein types. Furthermore, the rat SSP-CSPG binds P. falciparum IRBCs in a CS chain-dependent manner. Since IRBCs have been reported to accumulate in the placentas of malaria parasite-infected rodents, our results have important implications for exploiting pregnant rats as a model for studying chondroitin 4-sulfate-based therapeutics for human placental malaria.  相似文献   

7.
Several cytokines and growth factors act on cells after their association with the glycosaminoglycan (GAG) moiety of cell surface proteoglycans (PGs). Interferon-gamma (IFN-gamma) binds to GAG; however, the relevance of this interaction for the biological activity of IFN-gamma on human cells remains to be established. Human arterial smooth muscle cells (HASMC), the main cells synthesizing PG in the vascular wall, respond markedly to IFN-gamma. We found that treatment of HASMC with chondroitinase ABC, an enzyme that degrades chondroitin sulfate GAG, reduced IFN-gamma binding by more than 50%. This treatment increased the affinity of 125I-IFN-gamma for cells from a Kd value of about 93 nM to a Kd value of about 33 nM. However, the total binding was reduced from 9. 3 +/- 0.77 pmol/microg to 3.0 +/- 0.23 pmol/mg (n = 4). Interestingly, pretreatment with chondroitinase ABC reduced significantly the cellular response toward IFN-gamma. The interaction of IFN-gamma with chondroitin sulfate GAG was confirmed by affinity chromatography of isolated cell-associated 35S-, 3H-labeled PG on a column with immobilized IFN-gamma. The cell-associated PG that binds to IFN-gamma was a chondroitin sulfate PG (CSPG). This CSPG had a core protein of approximately 110 kDa that was recognized by anti-CD44 antibodies on Western blots. High molecular weight complexes between IFN-gamma and chondroitin 6-sulfate were observed in gel exclusion chromatography. Additions of chondroitin 6-sulfate to cultured HASMC antagonized the antiproliferative effect and expression of major histocompatibility complex II antigens induced by IFN-gamma. These results indicate that IFN-gamma binds with low affinity to the chondroitin sulfate GAG moiety of the cell surface CSPG receptor CD44. This interaction may increase the local concentration of IFN-gamma at the cell surface, thus facilitating its binding to high affinity receptors and modulating the ability of IFN-gamma to signal a cellular response.  相似文献   

8.
Deglycosylation of chondroitin sulfate proteoglycan and derived peptides   总被引:1,自引:0,他引:1  
In order to define the domain structure of proteoglycans as well as identify primary amino acid sequences specific for attachment of the various carbohydrate substituents, reliable techniques for deglycosylating proteoglycans are required. In this study, deglycosylation of cartilage chondroitin sulfate proteoglycan (CSPG) with minimal core protein cleavage was accomplished by digestion with chondroitinase ABC and keratanase, followed by treatment with anhydrous HF in pyridine. Nearly complete deglycosylation of secreted proteoglycan was verified within 45 min of HF treatment by loss of incorporated [3H]glucosamine label from the proteoglycan as a function of time of treatment, as well as by direct analysis of carbohydrate content and xylosyltransferase acceptor activity of unlabeled core protein preparations. The deglycosylated CSPG preparations were homogeneous and of high molecular weight (approximately 370,000). Comparison of the intact deglycosylated core protein preparations with newly synthesized unprocessed precursors (apparent Mr approximately 360,000) suggested that extensive proteolytic cleavage of the core protein did not occur during normal intracellular processing. Furthermore, peptide patterns generated after clostripain digestion of core protein precursor and of deglycosylated secreted proteoglycan were comparable. With the use of the clostripain digestion procedure, peptides were produced from unlabeled proteoglycan, and two predominant peptides from the most highly glycosylated regions (the chondroitin sulfate rich regions of the proteoglycan) were isolated, characterized, and deglycosylated. These peptides were found to follow similar kinetics of deglycosylation and to acquire xylose acceptor activity comparable to the intact core protein.  相似文献   

9.
Two different chondroitin sulfate proteoglycans (CSPG) in embryonic chick brain were distinguished by immunoreactivity either with S103L, a rat monoclonal antibody which reacts specifically with an 11-amino-acid region in the chondroitin sulfate domain of the core protein of chick cartilage CSPG (Krueger, R. C., Jr., Fields, T. A., Mensch, J. R., and Schwartz, N. B. (1990) J. Biol. Chem. 265, 12088-12097), or with HNK-1, a mouse monoclonal antibody which reacts with a 3-sulfoglucuronic acid residue on neural glycolipids and glycoproteins (Chou, D. K. H., Ilyas, A., Evans, J. E. Costello, C., Quarles, R. H., and Jungawala, F. B. (1986) J. Biol. Chem. 261, 11717-11725) but not with both antibodies. This specific immunoreactivity was used to separate the two CSPGs for further characterization. The S103L reactive brain proteoglycan had a core protein of similar size to cartilage CSPG (370 kDa) but exhibited a smaller hydrodynamic size (K(av) of 0.308). It was substituted predominantly with chondroitin sulfate chains and virtually no keratan sulfate chains. The HNK-1 reactive CSPG had a smaller core protein (340 kDa), an even smaller hydrodynamic size (K(av) of 0.564), and was substituted with both chondroitin sulfate and keratan sulfate chains. Glycosidase digestion patterns with endo-beta-galactosidase, N-glycosidase F, neuraminidase, and O-glycosidase, and reactivity with an antibody to the hyaluronate binding region also showed significant differences between the two brain CSPGs. Expression of the S103L reactive brain CSPG was developmentally regulated from embryonic day 7 through 19 with a peak in core protein on day 13, and in mRNA expression at day 10. In contrast the HNK-1 reactive brain CSPG was constitutively present from day 7 through hatching. These data suggest that these two distinct core proteins are immunologically and biochemically unique translation products of two different CSPG genes.  相似文献   

10.
Human osteosarcoma cells express a 78-kDa proteoglycan core protein to which an asparagine-bound oligosaccharide, O-glycosidically linked oligosaccharides and probably only a single chondroitin 6-sulfate chain of 29-kDa are bound. Prior to O-glycosylation, the N-glycosylated core protein exhibits a mass of 83 kDa. Upon digestion of the secreted proteoglycan with chondroitin ABC lyase a mature core protein with an apparent molecular mass of 106 kDa is obtained. Smaller amounts of core proteins of 101 and 115 kDa can be detected occasionally. The glycosaminoglycan composition and the relative molecular mass of the glycosaminoglycan chain distinguish this proteoglycan, tentatively named proteoglycan 100 (PG-100), from biglycan (small proteoglycan I) and decorin (small proteoglycan II) which are also expressed by osteosarcoma cells. An antiserum against PG-100 shows partial cross-reactivity with decorin, but in contrast to the latter proteoglycan it does not bind to type I collagen fibrils. PG-100 is not a unique product of osteosarcoma cells. It has also been found in the secretions of human skin fibroblasts.  相似文献   

11.
Members of the matrix metalloproteinase family of enzymes degrade specific components of the extracellular matrix. MMP-9 is a type IV/V collagenase necessary for normal osteogenesis and is increased in inflammatory and neoplastic conditions. In such destructive diseases as emphysema and arthritis, and in epithelial cancers, MMP-9 is produced by cells of the monocyte lineage. Fetuin, a prominent serum glycoprotein, binds to and inactivates TGF-beta family members and through this mechanism regulates osteogenesis (Binkert et al., 1999, J Biol Chem 274:28514-28520.). We studied the effects of TGF-beta1 and fetuin on proMMP-9 release by the human monocyte line THP-1. Exogenous TGF-beta1 stimulated proMMP-9 release by THP-1 cells, with half-maximal stimulation at approximately 0.01 ng/ml TGF-beta1. Human fetuin (0.5-2 microM) partially inhibited this stimulation. Human fetuin alone stimulated THP-1 monocyte proMMP-9 release, with half maximal stimulation at approximately 0.25 microM fetuin. Neutralizing antibody specific for TGF-beta1 also stimulated proMMP-9 release, suggesting that endogenously-derived TGF-beta1 has an inhibitory effect. In freshly isolated human peripheral blood monocytes, fetuin stimulated proMMP-9 release with a dose-response curve similar to that observed in THP-1 cells. Human fetuin also activated proMMP-9 present in THP-1 conditioned medium. Taken together, these data suggest that under physiological conditions, fetuin facilitates matrix degradation by monocyte-derived MMP-9, both by opposing the autocrine inhibitory effect of endogenous TGF-beta1 on proMMP-9 release, and by activating proMMP-9 in the pericellular milieu. Conversely, fetuin may limit the stimulation of monocyte proMMP-9 release by high levels of exogenous TGF-beta1. Such modulation could prove important under pathological conditions where TGF-beta1 derived from paracrine sources is abundant, such as in epithelial malignancies.  相似文献   

12.
Structural changes in proteoglycans (PGs) were examined during the neuritogenesis of PC12 cells induced by nerve growth factor (NGF). (1) A heparan sulfate (HS) PG and a chondroitin sulfate (CS) PG were synthesized by PC12 cells, irrespective of the presence of NGF or the duration of culture. PGs released from PC12 cells into the culture medium were mostly CSPGs. (2) In the absence of NGF, the apparent molecular mass of HSPG prepared from PC12 cells after 3 days of culture was in the range of 90-190 kDa for the intact form (Kav = 0.38 on Sepharose CL-6B), 12 kDa for HS, and 61 kDa for the core protein. In the presence of NGF, these values were 90-190 kDa, 10 kDa, and 51 kDa and 61 kDa, respectively. The intact forms of cell-associated CSPG had apparent molecular mass ranges of 120-150 kDa and 120-190 kDa (Kav = 0.38 and 0.34), with CSs of 15 kDa and 20 kDa in the presence and absence of NGF, respectively. The apparent molecular mass of the core protein of cell-associated CSPG was 92 kDa, irrespective of the presence of NGF. The molecular sizes of cell-associated PGs and their glycosaminoglycans remained unchanged during culture. (3) CSPGs released by PC12 cells into the culture medium were separated into two peaks (I and II) by column chromatography on DEAE-cellulose. The peak II fraction prepared from the medium with NGF after 3 days of culture consisted of CSPG with Kav = 0.22 on Sephacryl S-300 [40-84 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Large aggregating chondroitin sulfate proteoglycan (CSPG/aggrecan) is one of the major extracellular matrix components in cartilage. The core protein is also large, over 200 kDa, and modular with a distinct correspondence between protein structural domains and the encoding exons. Here we report the isolation, using chick CSPG cDNA probes and the ensuing sequencing, of genomic clones containing exons encoding the chick CSPG core protein. The 5 two globular domains, G1 and G2, are encoded by four and three exons, respectively, and the interglobular domain is encoded by a single exon. The chondroitin sulfate attachment domain is encoded by the largest exon, 3,216 bp, which is approximately 50% of the total coding sequence. Combined with the previous report (Tanaka, T., Har-el, R. Tanzer, M.L. 1988 J. Biol. Chem. 263, 15831–15835), these data reveal that the chick CSPG gene contains at least 18 exons spanning a genome which is greater than 30 kb. No evidence was obtained for multiple genes for aggrecan in the chick genome. Elucidation of the chick genomic structure allows comparison of the avian and mammalian link protein genes to the homologous portions of avian and mammalian core protein genes (hyaluronate binding domain) with respect to their origins and paths of duplication and divergence. Correspondence to: N.B. Schwartz  相似文献   

14.
15.
One of the major sulfated proteins secreted by rat hepatocytes contains a low-sulfated chondroitin sulfate chain and its apparent molecular mass upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis shifts from 40 to 28 kDa upon chondroitinase ABC treatment (E. M. Sj?berg and E. Fries, 1990, Biochem. J. 272, 113-118). These properties suggest that this protein is the rat homologue of the major trypsin inhibitor of human urine which was recently named bikunin. In serum, bikunin occurs mainly as a subunit of the pre-alpha-inhibitor and the inter-alpha-inhibitor; in these proteins it is covalently linked to the other polypeptides through its chondroitin sulfate chain. Bikunin has been shown to be synthesized by liver cells as a 42-kDa precursor, in which it is linked to alpha 1-microglobulin by two basic amino acids. We have isolated bikunin from rat urine and prepared antibodies against it. In rat hepatocytes pulse-labeled with [35S]methionine, these antibodies precipitated a labeled protein of 42 kDa. Upon chase, three different labeled proteins were recognized by the antibodies in the medium: one protein of 40 kDa (free bikunin), one of 125 kDa (presumably pre-alpha-inhibitor), and one greater than 240 kDa (possibly a protein related to the inter-alpha-inhibitor). Pulse-chase experiments with [35S]sulfate showed that these proteins occurred intracellularly as precursors containing alpha 1-microglobulin. These results demonstrate that the completion of the chondroitin sulfate chain and its coupling to other polypeptide chains occur before the cleavage of the alpha 1-microglobulin/bikunin precursor.  相似文献   

16.
The N terminus of the human MUC2 mucin (amino acids 1-1397) has been expressed as a recombinant tagged protein in Chinese hamster ovary cells. The intracellular form was found to be an endoglycosidase H-sensitive monomer, whereas the secreted form was an oligomer that gave monomers upon disulfide bond reduction. The secreted MUC2 N terminus contained a trypsin-resistant core fragment. Edman sequencing and mass spectrometry of the peptides obtained localized this core fragment to the C-terminal end of the recombinant protein. This core retained its oligomeric nature with an apparent mass of approximately 240 kDa. Upon reduction, peptides of approximately 85 kDa were found, suggesting that the N terminus forms trimers. This interpretation was also supported by gel electrophoresis and gel filtration of the intact MUC2 N terminus. Electron microscopy revealed three globular domains each linked via an extended and flexible region to a central part in a trefoil-like manner. Immunostaining with gold-labeled antibodies localized the N-terminal end to the three globular structures, and the antibodies directed against the Myc and green fluorescent protein tags attached at the C terminus localized these to the stalk side of the central trefoil. The N terminus of the MUC2 mucin is thus assembled into trimers that contain proteolytically stable parts, suggesting that MUC2 can only be partly degraded by intestinal proteases and thus is able to maintain a mucin network protecting the intestine.  相似文献   

17.
Chicken embryos homozygous for the autosomal recessive gene nanomelia exhibit cartilage defects, synthesize low levels of cartilage chondroitin sulfate proteoglycan (CSPG), and are missing the CSPG core protein (Argraves, W. S., McKeown-Longo, P. J., and Goetinck, P. F. (1981) FEBS Lett. 131, 265). In our studies of nanomelic chondrocytes in culture, we detected neither sulfate-labeled CSPG nor its Mr 370,000 core protein. However, in immunoprecipitation reactions using both polyclonal and monoclonal antibodies directed against the cartilage CSPG core protein, we identified a protein of Mr 300,000 that contains an epitope found in the hyaluronic acid-binding region of the normal core protein. This protein was also detected among products synthesized by chondrocytes obtained from phenotypically normal embryos resulting from matings between parents heterozygous for nanomelia. Sensitivity to endoglycosidase H indicated that the product is a glycoprotein with attached mannose-rich oligosaccharides. Pulse-chase studies revealed the disappearance of the glycoprotein after 6 h of chase, but no detectable formation of proteoglycan. Our results suggest that although nanomelic chondrocytes are deficient in the production of normal CSPG and its core protein, they do synthesize a smaller, immunologically related glycoprotein that does not undergo the post-translational processing characteristic of the normal cartilage core protein.  相似文献   

18.
The metastatic spread of tumor cells occurs through a complex series of events, one of which involves the adhesion of tumor cells to extracellular matrix (ECM) components. Multiple interactions between cell surface receptors of an adherent tumor cell and the surrounding ECM contribute to cell motility and invasion. The current studies evaluate the role of a cell surface chondroitin sulfate proteoglycan (CSPG) in the adhesion, motility, and invasive behavior of a highly metastatic mouse melanoma cell line (K1735 M4) on type I collagen matrices. By blocking mouse melanoma cell production of CSPG with p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside), a compound that uncouples chondroitin sulfate from CSPG core protein synthesis, we observed a corresponding decrease in melanoma cell motility on type I collagen and invasive behavior into type I collagen gels. Melanoma cell motility on type I collagen could also be inhibited by removing cell surface chondroitin sulfate with chondroitinase. In contrast, type I collagen-mediated melanoma cell adhesion and spreading were not affected by either beta-D-xyloside or chondroitinase treatments. These results suggest that mouse melanoma CSPG is not a primary cell adhesion receptor, but may play a role in melanoma cell motility and invasion at the level of cellular translocation. Furthermore, purified mouse melanoma cell surface CSPG was shown, by affinity chromatography and in solid phase binding assays, to bind to type I collagen and this interaction was shown to be mediated, at least in part, by chondroitin sulfate. Additionally we have determined that mouse melanoma CSPG is composed of a 110-kD core protein that is recognized by anti-CD44 antibodies on Western blots. Collectively, our data suggests that interactions between a cell surface CD44-related CSPG and type I collagen in the ECM may play an important role in mouse melanoma cell motility and invasion, and that the chondroitin sulfate portion of the proteoglycan seems to be a critical component in mediating this effect.  相似文献   

19.
20.
Besides the monomeric mammalian 95 kDa progelatinase, two additional forms, a disulfide-bridged 220 kDa dimer and a 125 kDa form were isolated from human PMN leukocytes. The 125 kDa progelatinase was identified as a covalently linked, disulfide-bridged heterodimer formed of the monomer with a 25 kDa protein. This 25 kDa protein was isolated from gelatinase bound to the affinity support of gelatin-Sepharose and eluted by DTE-containing buffer. The amino acid sequence of tryptic peptides of this protein revealed homology with an alpha 2-microglobulin-related protein from rats, a protein so far unknown in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号