共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 3. Bound ligand vibrational modes 总被引:1,自引:0,他引:1
The vibrations of the bound diatomic heme ligands CO, CN-, and NO are investigated by resonance Raman spectroscopy in various redox states of Escherichia coli sulfite reductase hemoprotein, and assignments are generated by use of isotopically labeled ligands. For the fully reduced CO complex (ferrous siroheme, reduced Fe4S4 cluster) at room temperature, nu CO is observed at 1904 cm-1, shifting to 1920 cm-1 upon oxidation of the cluster. The corresponding delta FeCO modes are identified at 574 and 566 cm-1, respectively, by virtue of the zigzag pattern of their isotopic shifts. In frozen solution, two species are observed for the cluster-oxidized state, with nu CO at 1910 and 1936 cm-1 and nu FeC at 532 and 504 cm-1, respectively; nu FeC for the fully reduced species is identified at 526 cm-1 in the frozen state. For the ferrous siroheme-NO complex (cluster oxidized), nu NO is identified at 1555 cm-1 in frozen solution and a low-frequency mode is identified at 558 cm-1; this stretching mode is significantly lower than that observed in Mb-NO. For the ferric siroheme cyanide complexes evidence of two ligand-bonding forms is observed, with modes at 451/390 and 451/352 cm-1; they are distinguished by a reversal of the isotopic shift patterns of the upper and lower modes and could arise from a linear and a bent Fe-C unit, respectively. For the ferrous siroheme cyanide complex isotope-sensitive modes observed at 495 and 452 cm-1 are assigned to the FeCN- bending and FeC stretching vibrations, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
S H Han J F Madden R G Thompson S H Strauss L M Siegel T G Spiro 《Biochemistry》1989,28(13):5461-5471
Resonance Raman (RR) spectra are reported for the hemoprotein subunit (SiR-HP) of Escherichia coli NADPH-sulfite reductase (EC 1.8.1.2) in various ligation and redox states. Comparison of the RR spectra of extracted siroheme and the mu-oxo FeIII dimer of octaethylisobacteriochlorin with those of mu-oxo FeIII octaethylchlorin dimer and mu-oxo FeIII octaethylporphyrin dimer demonstrates that many siroheme bands can be correlated with established porphyrin skeletal modes. Depolarization measurements are a powerful tool in this correlation, since the 45 degrees rotation of the C2 symmetry axis of the isobacteriochlorin ring relative to the chlorin system results in reversal of the polarization properties (polarized vs anomalously polarized) of bands correlating with B1g and B2g modes of porphyrin. Various SiR-HP adducts (CO, NO, CN-, SO3(2-] show upshifted high-frequency bands, characteristic of the low-spin state and consistent with the expected core size sensitivity of the skeletal modes. Fully reduced unliganded SiR-HP (both siroheme and Fe4S4 cluster reduced) in liquid solution displays RR features comparable to those of high-spin ferrous porphyrins; on freezing, the RR spectrum changes, reflecting an apparent mixture of siroheme spin states. At intermediate reduction levels in solution a RR species is observed whose high-frequency bands are upshifted relative to oxidized and fully reduced SiR-HP. This spectrum, thought to arise from the "one-electron" state of SiR-HP (siroheme reduced, cluster oxidized), may be due to S = 1 FeII siroheme. 相似文献
4.
The oxidized forms of resting and sulfite-complexed Escherichia coli sulfite reductase heme protein subunit react with near-stoichiometric amounts of porphyrexide to produce what is best characterized as a ferrisiroheme pi cation radical. Addition of either sodium ascorbate or NADPH completely regenerates the parent form. Implications of these findings with respect to mechanisms of metal-radical J coupling and catalysis are discussed. 相似文献
5.
The heme protein subunit of Escherichia coli sulfite reductase shows enhanced reactivity with its substrate and a number of other ligands after a cycle of reduction and reoxidation at alkaline pH. At pH 9.5 this variant of the enzyme possesses at least four EPR-detectable, chloride-sensitive high-spin conformers, in contrast to the single chloride-insensitive species observed in the oxidized, resting enzyme at pH 7.7. Quantitative reversal of the spectral and ligand-binding properties of the "activated" enzyme to those of the resting enzyme is observed on reacidification to pH 7.7. At intermediate pH values, there occurs an acid-catalyzed relaxation of the activated enzyme to the resting form. This reaction is distinct from the one responsible for the accelerated ligand binding and production of multiple EPR conformers, which appears to be regulated by a process with a pK of 8.5. 相似文献
6.
Resonance Raman (RR) spectra from the hemoprotein subunit of Escherichia coli sulfite reductase (SiR-HP) are examined in the low-frequency (200-500 cm-1) region where Fe-S stretching modes are expected. In spectra obtained with excitation in the siroheme Soret or Q bands, this region is dominated by siroheme modes. Modes assignable to the Fe4S4 cluster are selectively enhanced, however, with excitation at 488.0 or 457.9 nm. The assignments are confirmed by observation of the expected frequency shifts in SiR-HP extracted from E. coli grown on 34S-labeled sulfate. The mode frequencies and isotopic shifts resemble those seen in RR spectra of other Fe4S4 proteins and analogues, but the breathing mode of the cluster at 342 cm-1 is higher than that observed in the other species. Spectra of various ligand complexes of SiR-HP reveal only slight sensitivity of the cluster terminal ligand modes to the presence of exogenous heme ligands, at variance with a model of ligand binding in a bridged mode between heme and cluster. Close examination of RR spectra obtained with siroheme Soret-band excitation reveals additional 34S-sensitive features at 352 and 393 cm-1. These may be attributed to a bridging thiolate ligand. 相似文献
7.
Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12. 总被引:10,自引:1,他引:10 下载免费PDF全文
A substantially improved purification of Escherichia coli NADH-dependent nitrite reductase was obtained by purifying it in presence of 1 mM-NO2- and 10 microM-FAD. The enzyme was obtained in 20% yield with a maximum specific activity of 1.04 kat . kg-1: more than 95% of this sample subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis migrated as a single band of protein. This highly active enzyme contained one non-covalently bound FAD molecule, and, probably, 5 Fe atoms and 4 acid-labile S atoms per subunit. No FMN, covalently bound flavin or Mo was detected. The spectrum of the enzyme shows absorption maxima at 386, 455, 530 and about 575 nm with a shoulder at 480--490 nm. The Soret-band/alpha-band absorbance ratio is about 4:1. These spectral features are characteristic of sirohaem, apart from the maximum at 455nm, which is attributed to flavin. The enzyme also catalyses the NADH-dependent reduction of horse heart cytochrome c, 2,6-dichlorophenol-indophenol and K3Fe(CN)6. The presence of sirohaem in E. coli nitrite reductase explains the apparent identity of the cysG and nirB gene of E. coli and inability of hemA mutants to reduce nitrite. 相似文献
8.
Janick & Siegel [Janick, P. A., & Siegel, L. M. (1982) Biochemistry 21, 3538-3547] showed that the EPR spectrum of the reduced Fe4S4 center (S = 1/2) in fully reduced native ("unligated") Escherichia coli NADPH-sulfite reductase hemoprotein subunit (SiR-HP) is perturbed by interaction with paramagnetic ferrous siroheme (S = 1 or 2) to yield several novel sets of EPR signals: one set with all g values between 2.0 and 2.8, termed "S = 1/2" type, and two sets with the lowest field g value between 4.7 and 5.4, termed "S = 3/2" type. The present study has shown that EPR spectra of fully reduced SiR-HP are nearly quantitatively converted to the classical "g = 1.94" type typical of S = 1/2 Fe4S4 clusters when the heme has been ligated by strong field ligands such as CO, CN-, S2-, and AsO2-, converting the ferroheme to S = 0. However, the exact line shapes and g values of the g = 1.94 differ markedly when different ligands are bound to the heme. Also, optical difference spectra taken between enzyme species in which the heme is kept in the same (Fe2+) oxidation state while the Fe4S4 center is reduced or oxidized show that the optical spectrum of the ligated siroheme is sensitive to the oxidation state of the Fe4S4 cluster. These results indicate that the heme-Fe4S4 interaction of native SiR-HP persists even when the heme Fe is bound to exogenous ligands. We have also found that the g values of the exchange-coupled S = 1/2 and S V 3/2 type signals of native reduced SiR-HP can be significantly shifted by addition of potential weak field heme ligands--halides and formate--or low concentrations of certain chaotropic agents--guanidinium salts and dimethyl sulfoxide--to the fully reduced enzyme. Such agents can also promote interconversion of the S = 1/2 and S = 3/2 type signals. These effects are reversed on removal of the agent. Treatment of reduced SiR-HP with relatively large concentrations of chaotropes, e.g., 60% dimethyl sulfoxide or 2 or 3 M urea, leads to abolition of the S = 1/2 and S = 3/2 EPR signals and their replacement by signals of the g = 1.94 type. 相似文献
9.
Escherichia coli sulfite reductase (SiR) is a large and soluble enzyme with an alpha(8)beta(4) quaternary structure. Protein alpha (or sulfite reductase flavoprotein) contains both FAD and FMN, whereas protein beta (or sulfite reductase hemoprotein (SiR-HP)) contains an iron-sulfur cluster coupled to a siroheme. The enzyme is set up to arrange the redox cofactors in a FAD-FMN-Fe(4)S(4)-Heme sequence to make an electron pathway between NADPH and sulfite. Whereas alpha spontaneously polymerizes, we have been able to produce SiR-FP60, a monomeric but fully active truncated version of it, lacking the N-terminal part (Zeghouf, M., Fontecave, M., Macherel, D., and Covès, J. (1998) Biochemistry 37, 6114-6123). Here we report the cloning, overproduction, and characterization of the beta subunit. Pure recombinant SiR-HP behaves as a monomer in solution and is identical to the native protein in all its characteristics. Moreover, we demonstrate that the combination of SiR-FP60 and SiR-HP produces a functional 1:1 complex with tight interactions retaining about 20% of the activity of the native SiR. In addition, fully active SiR can be reconstituted by incubation of the octameric sulfite reductase flavoprotein with recombinant SiR-HP. Titration experiments and spectroscopic properties strongly suggest that the holoenzyme should be described as an alpha(8)beta(8) with equal amounts of alpha and beta subunits and that the alpha(8)beta(4) structure is probably not correct. 相似文献
10.
11.
The flavoprotein moiety of Escherichia coli sulfite reductase (SiR-FP) is homologous to electron transfer proteins such as cytochrome-P450 reductase (CPR) or nitric oxide synthase (NOS). We report on the three-dimensional structure of SiR-FP18, the flavodoxin-like domain of SiR-FP, which has been determined by NMR. In the holoenzyme, this domain plays an important role by shuttling electrons from the FAD to the hemoprotein (the beta-subunit). The structure presented here was determined using distance and torsion angle information in combination with residual dipolar couplings determined in two different alignment media. Several protein-FMN NOEs allowed us to place the prosthetic group in its binding pocket. The structure is well-resolved, and (15)N relaxation data indicate that SiR-FP18 is a compact domain. The binding interface with cytochrome c, a nonphysiological electron acceptor, has been determined using chemical shift mapping. Comparison of the SiR-FP18 structure with the corresponding domains from CPR and NOS shows that the fold of the protein core is highly conserved, but the analysis of the electrostatic surfaces reveals significant differences between the three domains. These observations are placed in the physiological context so they can contribute to the understanding of the electron transfer mechanism in the SiR holoenzyme. 相似文献
12.
The flavodoxin-like domain, missing in the three-dimensional structure of the monomeric, simplified model of the Escherichia coli sulfite reductase flavoprotein component (SiR-FP), has now been expressed independently. This 168 amino acid protein was named SiR-FP18 with respect to its native molecular weight and represents the FMN-binding domain of SiR-FP. This simplified biological object has kept the main characteristics of its counterpart in the native protein. It could incorporate FMN exclusively and stabilize a neutral air-stable semiquinone radical. Both the radical and the fully reduced forms of SiR-FP18 were able to transfer their electrons to DCPIP or cytochrome c quantitatively. SiR-FP18 was able to form a highly stable complex with SiR-HP, the hemoprotein component of the sulfite reductase containing an iron-sulfur cluster coupled to a siroheme. In agreement with the postulated catalytic cycle of SiR-FP, only the fully reduced form of SiR-FP18 could transfer one electron to SiR-HP, the transferred electron being localized exclusively on the heme. As isolated SiR-FP18 has kept the main characteristics of the FMN-binding domain of the native protein, a structural analysis by NMR was performed in order to complete the partial structure obtained previously. Structural modeling was performed using sequence homologues, cytochrome P450 reductase (CPR; 29% identity) and bacterial cytochrome P450 (P450-BM3; 26% identity), as conformational templates. These sequences were anchored using common secondary structural elements identified from heteronuclear NMR data measured on the protein backbone. The resulting structural model was validated, and subsequently refined using residual (C(alpha)-C', N-H(N), and C'-H(N)) dipolar couplings measured in an anisotropic medium. The overall fold of SiR-FP18 is very similar to that of bacterial flavodoxins and of the flavodoxin-like domain in CPR or P450-BM3. 相似文献
13.
Escherichia coli nitrate reductase subunit A: its role as the catalytic site and evidence for its modification. 总被引:5,自引:3,他引:5 下载免费PDF全文
Subunits A and B were isolated from purified nitrate reductase by preparative electrophoresis in low levels of sodium dodecyl sulfate. Nonheme iron and low levels of molybdenum were associated with isolated subunit A but not with isolated subunit B. After dialysis against a source of molybdenum cofactor, subunit A regained tightly bound molybdenum and concomitantly regained enzyme activity and reactivity with anti-nitrate reductase antiserum. Subunit B neither bound cofactor nor regained activity or reactivity with antiserum. These data indicate that subunit A contains the active site of the enzyme. Subunit A was also found to be modified posttranslationally in a similar fashion as is subunit B. This was determined by comparison of partial proteolytic digests and amino acid analyses of A subunits from precursor and membrane-bound forms of nitrate reductase. 相似文献
14.
Cloning of the 3'-phosphoadenylyl sulfate reductase and sulfite reductase genes from Escherichia coli K-12 总被引:1,自引:0,他引:1
The structural genes for 3'-phosphoadenylyl sulfate (PAPS) reductase (cysH) and sulfite reductase (alpha and beta subunits; EC 1.8.1.2)(cysI and cysJ) of Escherichia coli K-12 have been cloned by complementation. pCYSI contains two PstI fragments (18.3 and 2.9 kb) which complement cysH-, cysI-, and cysJ- mutants. Subcloning showed that the cysH gene is located on a 1.6-kb ClaI subfragment (pCYSI-3) whereas cysI and most of cysJ are carried on a 3.7-kb ClaI subfragment (pCYSI-5). The PAPS reductase gene is closely linked to the sulfite reductase genes, but its expression is regulated by a unique promoter. The cysI and cysJ genes, on the other hand, are transcribed as an operon and the promoter precedes the cysI gene. Maxicell analysis demonstrated that pCYSI encodes three polypeptides of Mr 27,000, 57,000, and 60,000, in addition to the tetracycline-resistance determinant. The 60- and 57-kDa proteins are most likely the alpha and beta subunits, respectively, of E. coli sulfite reductase while the 27-kDa protein is putatively identified as PAPS reductase. Preliminary data suggest that the alpha and beta subunits of sulfite reductase are encoded by cysI and cysJ, respectively. 相似文献
15.
Expression,purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli 总被引:3,自引:0,他引:3
Gasparian ME Ostapchenko VG Schulga AA Dolgikh DA Kirpichnikov MP 《Protein expression and purification》2003,31(1):133-139
Enteropeptidase (synonym:enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. The DNA sequence encoding the light chain (catalytic subunit) of human enteropeptidase (GenBank Accession No. U09860) was synthesized from 26 oligonucleotides by polymerase chain reaction and cloned into plasmid pET-32a downstream to the gene of fusion partner thioredoxin immediately after the DNA sequence encoding enteropeptidase recognition site. The fusion protein thioredoxin/human enteropeptidase light chain was expressed in Escherichia coli BL21(DE3) strain in both soluble and insoluble forms. The soluble recombinant fusion protein failed to undergo autocatalytic cleavage and activation; however, autocatalytic cleavage and activation of recombinant human enteropeptidase light chain (L-HEP) were achieved by solubilization and renaturation of the fusion protein from inclusion bodies and the active L-HEP was purified on agarose-linked soybean trypsin inhibitor. The purified L-HEP cleaved the synthetic peptide substrate Gly-Asp-Asp-Asp-Asp-Lys-beta-naphthylamide with kinetic parameters K(m)=0.16 mM and k(cat)=115 s(-1) and small ester Z-Lys-SBzl with K(m)=140 microM, k(cat)=133 s(-1). L-HEP associated with soybean trypsin inhibitor slowly and small ester Z-Lys-SBzl cleavage was inhibited with K(i)(*)=2.3 nM. L-HEP digested thioredoxin/human epidermal growth factor fusion protein five times faster than equal activity units of bovine recombinant light chain (EKMax, Invitrogen) at the same conditions. 相似文献
16.
17.
18.
The catalytic subunit of phosphorylase b kinase (gamma) and an engineered truncated form (gamma-trc, residues 1-297) have been expressed in Escherichia coli. The truncated protein included the entire catalytic domain as defined by sequence alignment with other protein kinases but lacked the putative calmodulin binding domain. Full-length protein was produced in insoluble aggregates. Some activity was regenerated by solubilization in urea and dilution into renaturating buffer but the activity was found to be associated with a smaller molecular weight component. Full-length protein could not be refolded successfully. The truncated gamma subunit was produced in the soluble fraction of the cell as well as in inclusion bodies. The insoluble protein was refolded by dilution from urea and purified to homogeneity, in a one step separation on DEAE-Sepharose to give a protein mol. wt 32,000 +/- 2000 with a high sp. act. of 5.3 mumol 32P incorporated into phosphorylase b(PPB)/min/nmol. Kinetic parameters gave Km for ATP 46 +/- 3 microM and Km for PPb 27 +/- 1 microM. The sp. act. and the Km values are comparable to those observed for the activated holoenzyme and indicate that the gamma-trc retains the substrate recognition and catalytic properties. The ratio of activities at pH 6.8/8.2 was 0.84. gamma-trc was inhibited by ADP with a Ki of 52 microM and was sensitive to activation by Mg2+ and inhibition by Mn2+, properties that are characteristic of the holoenzyme and the isolated gamma subunit. Calmodulin which confers calcium sensitivity on the isolated gamma subunit had no effect on the enzymic properties of gamma-trc.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
20.
Important 2'-hydroxyl groups in model substrates for M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli. 总被引:4,自引:0,他引:4
The role of 2'-hydroxyl groups in a model substrate for RNase P from Escherichia coli was studied using mixed DNA/RNA derivatives of such a substrate. The presence of the 2'-hydroxyl groups of nucleotides at positions -1 and -2 in the leader sequence and at position 1, as well as at the first C in the 3'-terminal CCA sequence, are important but not absolutely essential for efficient cleavage of the substrate by RNase P or its catalytic RNA subunit, M1 RNA. The 2'-hydroxyl groups in the substrate that are important for efficient cleavage also participate in the binding of Mg2+. An all-DNA external guide sequence (EGS) can efficiently render a potential substrate, derived from the model substrate, susceptible to cleavage by the enzyme or its catalytic RNA subunit. Furthermore, both DNA and RNA EGSs turn over during the reaction with RNase P in vitro. The identity of the nucleotide at position 1 in the substrate, the adjacent Mg(2+)-binding site in the leader sequence, and the junction of the single and double-stranded regions are the important elements in the recognition of model substrates, as well as in the identification of the sites of cleavage in those model substrates. 相似文献