首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The prediction of protein 3D structures close to insertions and deletions or, more generally, loop prediction, is still one of the major challenges in homology modeling projects. In this article, we developed ranking criteria and selection filters to improve knowledge-based loop predictions. These criteria were developed and optimized for a test data set containing 678 insertions and deletions. The examples are, in principle, predictable from the used loop database with an RMSD < 1 A and represent realistic modeling situations. Four noncorrelated criteria for the selection of fragments are evaluated. A fast prefilter compares the distance between the anchor groups in the template protein with the stems of the fragments. The RMSD of the anchor groups is used for fitting and ranking of the selected loop candidates. After fitting, repulsive close contacts of loop candidates with the template protein are used for filtering, and fragments with backbone torsion angles, which are unfavorable according to a knowledge-based potential, are eliminated. By the combined application of these filter criteria to the test set, it was possible to increase the percentage of predictions with a global RMSD < 1 A to over 50% among the first five ranks, with average global RMSD values for the first rank candidate that are between 1.3 and 2.2 A for different loop lengths. Compared to other examples described in the literature, our large numbers of test cases are not self-predictions, where loops are placed in a protein after a peptide loop has been cut out, but are attempts to predict structural changes that occur in evolution when a protein is affected by insertions and deletions.  相似文献   

2.
Structural alignment of proteins is widely used in various fields of structural biology. In order to further improve the quality of alignment, we describe an algorithm for structural alignment based on text modelling techniques. The technique firstly superimposes secondary structure elements of two proteins and then, models the 3D-structure of the protein in a sequence of alphabets. These sequences are utilized by a step-by-step sequence alignment procedure to align two protein structures. A benchmark test was organized on a set of 200 non-homologous proteins to evaluate the program and compare it to state of the art programs, e.g. CE, SAL, TM-align and 3D-BLAST. On average, the results of all-against-all structure comparison by the program have a competitive accuracy with CE and TM-align where the algorithm has a high running speed like 3D-BLAST.  相似文献   

3.
Frenkel ZM  Trifonov EN 《Proteins》2007,67(2):271-284
A new method is proposed to reveal apparent evolutionary relationships between protein fragments with similar 3D structures by finding "intermediate" sequences in the proteomic database. Instead of looking for homologies and intermediates for a whole protein domain, we build a chain of intermediate short sequences, which allows one to link similar structural modules of proteins belonging to the same or different families. Several such chains of intermediates can be combined into an evolutionary tree of structural protein modules. All calculations were made for protein fragments of 20 aa residues. Three evolutionary trees for different module structures are described. The aim of the paper is to introduce the new method and to demonstrate its potential for protein structural predictions. The approach also opens new perspectives for protein evolution studies.  相似文献   

4.
An open question in protein homology modeling is, how well do current modeling packages satisfy the dual criteria of quality of results and practical ease of use? To address this question objectively, we examined homology‐built models of a variety of therapeutically relevant proteins. The sequence identities across these proteins range from 19% to 76%. A novel metric, the difference alignment index (DAI), is developed to aid in quantifying the quality of local sequence alignments. The DAI is also used to construct the relative sequence alignment (RSA), a new representation of global sequence alignment that facilitates comparison of sequence alignments from different methods. Comparisons of the sequence alignments in terms of the RSA and alignment methodologies are made to better understand the advantages and caveats of each method. All sequence alignments and corresponding 3D models are compared to their respective structure‐based alignments and crystal structures. A variety of protein modeling software was used. We find that at sequence identities >40%, all packages give similar (and satisfactory) results; at lower sequence identities (<25%), the sequence alignments generated by Profit and Prime, which incorporate structural information in their sequence alignment, stand out from the rest. Moreover, the model generated by Prime in this low sequence identity region is noted to be superior to the rest. Additionally, we note that DSModeler and MOE, which generate reasonable models for sequence identities >25%, are significantly more functional and easier to use when compared with the other structure‐building software.  相似文献   

5.
Modeling a protein structure based on a homologous structure is a standard method in structural biology today. In this process an alignment of a target protein sequence onto the structure of a template(s) is used as input to a program that constructs a 3D model. It has been shown that the most important factor in this process is the correctness of the alignment and the choice of the best template structure(s), while it is generally believed that there are no major differences between the best modeling programs. Therefore, a large number of studies to benchmark the alignment qualities and the selection process have been performed. However, to our knowledge no large-scale benchmark has been performed to evaluate the programs used to transform the alignment to a 3D model. In this study, a benchmark of six different homology modeling programs- Modeller, SegMod/ENCAD, SWISS-MODEL, 3D-JIGSAW, nest, and Builder-is presented. The performance of these programs is evaluated using physiochemical correctness and structural similarity to the correct structure. From our analysis it can be concluded that no single modeling program outperform the others in all tests. However, it is quite clear that three modeling programs, Modeller, nest, and SegMod/ ENCAD, perform better than the others. Interestingly, the fastest and oldest modeling program, SegMod/ ENCAD, performs very well, although it was written more than 10 years ago and has not undergone any development since. It can also be observed that none of the homology modeling programs builds side chains as well as a specialized program (SCWRL), and therefore there should be room for improvement.  相似文献   

6.
A computational strategy for homology modeling, using several protein structures comparison, is described. This strategy implies a formalized definition of structural blocks common to several protein structures, a new program to compare these structures simultaneously, and the use of consensus matrices to improve sequence alignment between the structurally known and target proteins. Applying this method to cytochromes P450 led to the definition of 15 substructures common to P450cam, P450BM3, and P450terp, and to proposing a 3D model of P450eryF. Proteins 28:388–404, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

7.
Alignment of protein sequences by their profiles   总被引:7,自引:0,他引:7  
The accuracy of an alignment between two protein sequences can be improved by including other detectably related sequences in the comparison. We optimize and benchmark such an approach that relies on aligning two multiple sequence alignments, each one including one of the two protein sequences. Thirteen different protocols for creating and comparing profiles corresponding to the multiple sequence alignments are implemented in the SALIGN command of MODELLER. A test set of 200 pairwise, structure-based alignments with sequence identities below 40% is used to benchmark the 13 protocols as well as a number of previously described sequence alignment methods, including heuristic pairwise sequence alignment by BLAST, pairwise sequence alignment by global dynamic programming with an affine gap penalty function by the ALIGN command of MODELLER, sequence-profile alignment by PSI-BLAST, Hidden Markov Model methods implemented in SAM and LOBSTER, pairwise sequence alignment relying on predicted local structure by SEA, and multiple sequence alignment by CLUSTALW and COMPASS. The alignment accuracies of the best new protocols were significantly better than those of the other tested methods. For example, the fraction of the correctly aligned residues relative to the structure-based alignment by the best protocol is 56%, which can be compared with the accuracies of 26%, 42%, 43%, 48%, 50%, 49%, 43%, and 43% for the other methods, respectively. The new method is currently applied to large-scale comparative protein structure modeling of all known sequences.  相似文献   

8.
STRUCTFAST is a novel profile-profile alignment algorithm capable of detecting weak similarities between protein sequences. The increased sensitivity and accuracy of the STRUCTFAST method are achieved through several unique features. First, the algorithm utilizes a novel dynamic programming engine capable of incorporating important information from a structural family directly into the alignment process. Second, the algorithm employs a rigorous analytical formula for profile-profile scoring to overcome the limitations of ad hoc scoring functions that require adjustable parameter training. Third, the algorithm employs Convergent Island Statistics (CIS) to compute the statistical significance of alignment scores independently for each pair of sequences. STRUCTFAST routinely produces alignments that meet or exceed the quality obtained by an expert human homology modeler, as evidenced by its performance in the latest CAFASP4 and CASP6 blind prediction benchmark experiments.  相似文献   

9.
Protein structure prediction is based mainly on the modeling of proteins by homology to known structures; this knowledgebased approach is the most promising method to date. Although it is used in the whole area of protein research, no general rules concerning the quality and applicability of concepts and procedures used in homology modeling have been put forward yet. Therefore, the main goal of the present work is to provide tools for the assessment of accuracy of modeling at a given level of sequence homology. A large set of known structures from different conformational and functional classes, but various degrees of homology was selected. Pairwise structure superpositions were performed. Starting with the definition of the structurally conserved regions and determination of topologically correct sequence alignments, we correlated geometrical properties with sequence homology (defined by the 250 PAM Dayhoff Matrix) and identity. It is shown that both the topological differences of the protein backbones and the relative positions of corresponding side chains diverge with decreasing sequence identity. Below 50% identity, the deviation in regions that are structurally not conserved continually increases, thus implying that with decreasing sequence identity modeling has to take into account more and more structurally diverging loop regions that are difficult to predict. © 1993 Wiley-Liss, Inc.  相似文献   

10.
When researchers build high-quality models of protein structure from sequence homology, it is today common to use several alternative target-template alignments. Several methods can, at least in theory, utilize information from multiple templates, and many examples of improved model quality have been reported. However, to our knowledge, thus far no study has shown that automatic inclusion of multiple alignments is guaranteed to improve models without artifacts. Here, we have carried out a systematic investigation of the potential of multiple templates to improving homology model quality. We have used test sets consisting of targets from both recent CASP experiments and a larger reference set. In addition to Modeller and Nest, a new method (Pfrag) for multiple template-based modeling is used, based on the segment-matching algorithm from Levitt's SegMod program. Our results show that all programs can produce multi-template models better than any of the single-template models, but a large part of the improvement is simply due to extension of the models. Most of the remaining improved cases were produced by Modeller. The most important factor is the existence of high-quality single-sequence input alignments. Because of the existence of models that are worse than any of the top single-template models, the average model quality does not improve significantly. However, by ranking models with a model quality assessment program such as ProQ, the average quality is improved by approximately 5% in the CASP7 test set.  相似文献   

11.
利用生物信息学方法分析了杉木CCoAOMT蛋白的氨基酸组成、等电点、疏水/亲水区、二级结构等蛋白质性质,并同欧洲云杉、拟南芥和水稻的蛋白进行了对比,并用生物信息学软件对其空间结构进行了模拟,同时对模建结果进行了结构质量的分析与检测。结果表明:该蛋白共有255个氨基酸,等电点为5.56,二级结构中α螺旋占37.65%,β折叠片占19.61%,无规卷曲占42.75%。三维结构检测表明此模型的结构符合立体化学规则。  相似文献   

12.
张林  柴惠  沃立科  袁小凤  黄燕芬 《生物信息学》2011,9(2):146-150,154
生物序列比对是生物信息学的基础,是当今功能基因组学研究中最常用、最重要的研究方法之一。本文对各类序列比对算法优缺点进行分析,对图形硬件的优势进行挖掘。在此基础上,将各类序列比对算法中准确性最高的动态规划算法予以实现,并将其映射到图形硬件上,以实现算法加速。通过实例进行性能评测,结果表明该加速算法在保证比对准确性的同时,能较大地提高比对速度。  相似文献   

13.
A novel method has been developed for acquiring the correct alignment of a query sequence against remotely homologous proteins by extracting structural information from profiles of multiple structure alignment. A systematic search algorithm combined with a group of score functions based on sequence information and structural information has been introduced in this procedure. A limited number of top solutions (15,000) with high scores were selected as candidates for further examination. On a test-set comprising 301 proteins from 75 protein families with sequence identity less than 30%, the proportion of proteins with completely correct alignment as first candidate was improved to 39.8% by our method, whereas the typical performance of existing sequence-based alignment methods was only between 16.1% and 22.7%. Furthermore, multiple candidates for possible alignment were provided in our approach, which dramatically increased the possibility of finding correct alignment, such that completely correct alignments were found amongst the top-ranked 1000 candidates in 88.3% of the proteins. With the assistance of a sequence database, completely correct alignment solutions were achieved amongst the top 1000 candidates in 94.3% of the proteins. From such a limited number of candidates, it would become possible to identify more correct alignment using a more time-consuming but more powerful method with more detailed structural information, such as side-chain packing and energy minimization, etc. The results indicate that the novel alignment strategy could be helpful for extending the application of highly reliable methods for fold identification and homology modeling to a huge number of homologous proteins of low sequence similarity. Details of the methods, together with the results and implications for future development are presented.  相似文献   

14.
Elofsson A 《Proteins》2002,46(3):330-339
One of the most central methods in bioinformatics is the alignment of two protein or DNA sequences. However, so far large-scale benchmarks examining the quality of these alignments are scarce. On the other hand, recently several large-scale studies of the capacity of different methods to identify related sequences has led to new insights about the performance of fold recognition methods. To increase our understanding about fold recognition methods, we present a large-scale benchmark of alignment quality. We compare alignments from several different alignment methods, including sequence alignments, hidden Markov models, PSI-BLAST, CLUSTALW, and threading methods. For most methods, the alignment quality increases significantly at about 20% sequence identity. The difference in alignment quality between different methods is quite small, and the main difference can be seen at the exact positioning of the sharp rise in alignment quality, that is, around 15-20% sequence identity. The alignments are improved by using structural information. In general, the best alignments are obtained by methods that use predicted secondary structure information and sequence profiles obtained from PSI-BLAST. One interesting observation is that for different pairs many different methods create the best alignments. This finding implies that if a method that could select the best alignment method for each pair existed, a significant improvement of the alignment quality could be gained.  相似文献   

15.
Peng J  Xu J 《Proteins》2011,79(6):1930-1939
Most threading methods predict the structure of a protein using only a single template. Due to the increasing number of solved structures, a protein without solved structure is very likely to have more than one similar template structures. Therefore, a natural question to ask is if we can improve modeling accuracy using multiple templates. This article describes a new multiple-template threading method to answer this question. At the heart of this multiple-template threading method is a novel probabilistic-consistency algorithm that can accurately align a single protein sequence simultaneously to multiple templates. Experimental results indicate that our multiple-template method can improve pairwise sequence-template alignment accuracy and generate models with better quality than single-template models even if they are built from the best single templates (P-value <10(-6)) while many popular multiple sequence/structure alignment tools fail to do so. The underlying reason is that our probabilistic-consistency algorithm can generate accurate multiple sequence/template alignments. In another word, without an accurate multiple sequence/template alignment, the modeling accuracy cannot be improved by simply using multiple templates to increase alignment coverage. Blindly tested on the CASP9 targets with more than one good template structures, our method outperforms all other CASP9 servers except two (Zhang-Server and QUARK of the same group). Our probabilistic-consistency algorithm can possibly be extended to align multiple protein/RNA sequences and structures.  相似文献   

16.
Vallat BK  Pillardy J  Elber R 《Proteins》2008,72(3):910-928
The first step in homology modeling is to identify a template protein for the target sequence. The template structure is used in later phases of the calculation to construct an atomically detailed model for the target. We have built from the Protein Data Bank (PDB) a large-scale learning set that includes tens of millions of pair matches that can be either a true template or a false one. Discriminatory learning (learning from positive and negative examples) is used to train a decision tree. Each branch of the tree is a mathematical programming model. The decision tree is tested on an independent set from PDB entries and on the sequences of CASP7. It provides significant enrichment of true templates (between 50 and 100%) when compared to PSI-BLAST. The model is further verified by building atomically detailed structures for each of the tentative true templates with modeller. The probability that a true match does not yield an acceptable structural model (within 6 A RMSD from the native structure) decays linearly as a function of the TM structural-alignment score.  相似文献   

17.
Kann MG  Goldstein RA 《Proteins》2002,48(2):367-376
A detailed analysis of the performance of hybrid, a new sequence alignment algorithm developed by Yu and coworkers that combines Smith Waterman local dynamic programming with a local version of the maximum-likelihood approach, was made to access the applicability of this algorithm to the detection of distant homologs by sequence comparison. We analyzed the statistics of hybrid with a set of nonhomologous protein sequences from the SCOP database and found that the statistics of the scores from hybrid algorithm follows an Extreme Value Distribution with lambda approximately 1, as previously shown by Yu et al. for the case of artificially generated sequences. Local dynamic programming was compared to the hybrid algorithm by using two different test data sets of distant homologs from the PFAM and COGs protein sequence databases. The studies were made with several score functions in current use including OPTIMA, a new score function originally developed to detect remote homologs with the Smith Waterman algorithm. We found OPTIMA to be the best score function for both both dynamic programming and the hybrid algorithms. The ability of dynamic programming to discriminate between homologs and nonhomologs in the two sets of distantly related sequences is slightly better than that of hybrid algorithm. The advantage of producing accurate score statistics with only a few simulations may overcome the small differences in performance and make this new algorithm suitable for detection of homologs in conjunction with a wide range of score functions and gap penalties.  相似文献   

18.
Leukemia inhibitory factor (LIF), a member of the gp130 family of helical cytokines, is involved in the hemopoietic and neural systems. The LIF signal transducing complex contains two receptor molecules, the LIF receptor (LIFR) and gp130. The extracellular region of the LIFR is unique in that it includes three membrane-proximal fibronectin type III domains and two cytokine binding domains (CBDs) separated by an immunoglobulin-like domain. Although some mutagenesis data on LIF are available, it is not yet known which regions of LIFR or gp130 bind LIF. Nor is it known whether LIFR contacts gp130 in a manner similar to the growth hormone receptor dimer and, if so, through which of its CBDs. To attempt to elucidate these matters and to investigate the receptor complex, models of the CBDs of LIFR and the CBD of gp130 were constructed. Analyses of the electrostatic isopotential surfaces of the CBD models suggest that gp130 and the membrane-proximal CBD of LIFR hetero-dimerize and bind LIF through contacts similar to those seen in the growth hormone receptor dimer. This work further demonstrates the utility of electrostatic analyses of homology models and suggests a strategy for biochemical investigations of the LIF-receptor complex.  相似文献   

19.
A key concept in template‐based modeling (TBM) is the high correlation between sequence and structural divergence, with the practical consequence that homologous proteins that are similar at the sequence level will also be similar at the structural level. However, conformational diversity of the native state will reduce the correlation between structural and sequence divergence, because structural variation can appear without sequence diversity. In this work, we explore the impact that conformational diversity has on the relationship between structural and sequence divergence. We find that the extent of conformational diversity can be as high as the maximum structural divergence among families. Also, as expected, conformational diversity impairs the well‐established correlation between sequence and structural divergence, which is nosier than previously suggested. However, we found that this noise can be resolved using a priori information coming from the structure‐function relationship. We show that protein families with low conformational diversity show a well‐correlated relationship between sequence and structural divergence, which is severely reduced in proteins with larger conformational diversity. This lack of correlation could impair TBM results in highly dynamical proteins. Finally, we also find that the presence of order/disorder can provide useful beforehand information for better TBM performance.  相似文献   

20.
R B Russell  G J Barton 《Proteins》1992,14(2):309-323
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号