首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ICF syndrome (immunodeficiency, centromeric region instability, facial anomalies) is a unique DNA methylation deficiency disease diagnosed by an extraordinary collection of chromosomal anomalies specifically in the vicinity of the centromeres of chromosomes 1 and 16 (Chr1 and Chr16) in mitogen-stimulated lymphocytes. These aberrations include decondensation of centromere-adjacent (qh) heterochromatin, multiradial chromosomes with up to 12 arms, and whole-arm deletions. We demonstrate that lymphoblastoid cell lines from two ICF patients exhibit these Chr1 and Chr16 anomalies in 61% of the cells and continuously generate 1qh or 16qh breaks. No other consistent chromosomal abnormality was seen except for various telomeric associations, which had not been previously noted in ICF cells. Surprisingly, multiradials composed of arms of both Chr1 and Chr16 were favored over homologous associations and cells containing multiradials with 3 or >4 arms almost always displayed losses or gains of Chr1 or Chr16 arms from the metaphase. Our results suggest that decondensation of 1qh and 16qh often leads to unresolved Holliday junctions, chromosome breakage, arm missegregation, and the formation of multiradials that may yield more stable chromosomal abnormalities, such as translocations. These cell lines maintained the abnormal hypomethylation in 1qh and 16qh seen in ICF tissues. The ICF-specific hypomethylation occurs in only a small percentage of the genome, e.g., ICF brain DNA had 7% less 5-methylcytosine than normal brain DNA. The ICF lymphoblastoid cell lines, therefore, retain not only the ICF-specific pattern of chromosome rearrangements, but also of targeted DNA hypomethylation. This hypomethylation of heterochromatic DNA sequences is seen in many cancers and may predispose to chromosome rearrangements in cancer as well as in ICF.  相似文献   

2.
Mutation in the DNMT3B DNA methyltransferase gene is a common cause of ICF (immunodeficiency, centromeric heterochromatin, facial anomalies) immunodeficiency syndrome and leads to hypomethylation of satellites 2 and 3 in pericentric heterochromatin. This hypomethylation is associated with centromeric decondensation and chromosomal rearrangements, suggesting that these satellite repeats have an important structural role. In addition, the satellite regions may have functional roles in modifying gene expression. The extent of satellite hypomethylation in ICF cells is unknown because methylation status has only been determined with restriction enzymes that cut infrequently at these loci. We have therefore developed a bisulfite conversion-based method to determine the detailed cytosine methylation patterns at satellite 2 sequences in a quantitative manner for normal and ICF samples. From our sequence analysis of unmodified DNA, the internal repeat region analyzed for methylation contains an average of 17 CpG sites. The average level of methylation in normal lymphoblasts and fibroblasts is 69% compared with 20% in such cells from ICF patients with DNMT3B mutations and 29% in normal sperm. Although the mean satellite 2 methylation values for these groups do not overlap, there is considerable overlap at the level of individual DNA strands. Our analysis has also revealed a pattern of methylation specificity, suggesting that some CpGs in the repeat are more prone to methylation than other sites. Variation in satellite 2 methylation among lymphoblasts from different ICF patients has prompted us to determine the frequency of cytogenetic abnormalities in these cells. Although our data suggest that some degree of hypomethylation is necessary for pericentromeric decondensation, factors other than DNA methylation appear to play a major role in this phenomenon. Another such factor may be altered replication timing because we have discovered that the hypomethylation of satellite 2 in ICF cultures is associated with advanced replication.  相似文献   

3.
The immunodeficiency, centromeric region instability, facial anomalies (ICF) syndrome is a rare autosomal recessive disease. Usually, it is caused by mutations in the DNA methyltransferase 3B gene, which result in decreased methylation of satellite DNA in the juxtacentromeric heterochromatin at 1qh, 16qh, and 9qh. Satellite II-rich 1qh and 16qh display high frequencies of abnormalities in mitogen-stimulated ICF lymphocytes without these cells being prone to aneuploidy. Here we show that in lymphoblastoid cell lines from four ICF patients, there was increased colocalization of the hypomethylated 1qh and 16qh sequences in interphase, abnormal looping of pericentromeric DNA sequences at metaphase, formation of bridges at anaphase, chromosome 1 and 16 fragmentation at the telophase–interphase transition, and, in apoptotic cells, micronuclei with overrepresentation of chromosome 1 and 16 material. Another source of anaphase bridging in the ICF cells was random telomeric associations between chromosomes. Our results elucidate the mechanism of formation of ICF chromosome anomalies and suggest that 1qh–16qh associations in interphase can lead to disturbances of mitotic segregation, resulting in micronucleus formation and sometimes apoptosis. This can help explain why specific types of 1qh and 16qh rearrangements are not present at high frequencies in ICF lymphoid cells despite diverse 1qh and 16qh aberrations continuously being generated.  相似文献   

4.
5.
6.
Qu G  Dubeau L  Narayan A  Yu MC  Ehrlich M 《Mutation research》1999,423(1-2):91-101
Rearrangements in heterochromatin in the vicinity of the centromeres of chromosomes 1 and 16 are frequent in many types of cancer, including ovarian epithelial carcinomas. Satellite 2 DNA is the main sequence in the unusually long heterochromatin region adjacent to the centromere of each of these chromosomes. Rearrangements in these regions and hypomethylation of satellite 2 DNA are a characteristic feature of patients with a rare recessive genetic disease, ICF (immunodeficiency, centromeric region instability, and facial anomalies). In all normal tissues of postnatal somatic origin, satellite 2 DNA is highly methylated. We examined satellite 2 DNA methylation in ovarian tumors of different malignant potential, namely, ovarian cystadenomas, low malignant potential (LMP) tumors, and epithelial carcinomas. Most of the carcinomas and LMP tumors exhibited hypomethylation in satellite 2 DNA of both chromosomes 1 and 16. A comparison of methylation of these sequences in the three types of ovarian neoplasms demonstrated that there was a statistically significant correlation between the extent of this satellite DNA hypomethylation and the degree of malignancy (P<0.01). Also, there was a statistically significant association (P<0.005) between genome-wide hypomethylation and undermethylation of satellite 2 DNA among these 17 tumors. In addition, we found abnormal hypomethylation of satellite alpha DNA in the centromere of chromosome 1 in many of these tumors. Our findings are consistent with the hypothesis that one of the ways that genome-wide hypomethylation facilitates tumor development is that it often includes satellite hypomethylation which might predispose cells to structural and numerical chromosomal aberrations. Several of the proteins that bind to pericentromeric heterochromatin are known to be sensitive to the methylation status of their target sequences and so could be among the sensors for detecting abnormal demethylation and mediating effects on chromosome structure and stability.  相似文献   

7.
Immunodeficiency, centromeric region instability, and facial anomalies (ICF), a rare recessive chromosome instability syndrome, involves the loss of DNA methyltransferase 3B activity and the consequent hypomethylation of a small portion of the genome. We demonstrate for the first time that ICF cells are strongly hypersensitive to a genotoxic agent, namely, ionizing radiation. However, unlike cell lines from patients with ataxia telangiectasia or Nijmegen breakage syndrome, chromosome instability syndromes also associated with unusual sensitivity to ionizing radiation, ICF cells did not show any deficiencies in their cell cycle checkpoints. ICF lymphoblastoid cell lines demonstrated increased apoptosis, long-term cell cycle arrest, and loss of viability in clonogenicity assays after irradiation compared to analogous normal cell lines. Also, the ICF cell lines were subject to high frequencies of rapid non-apoptotic cell death upon irradiation but not to abnormally high levels of radiation-induced, cytogenetically detectable chromosome abnormalities. ICF-associated undermethylation of some regulatory gene(s) might lead to an exaggerated response to radiation-induced breaks in DNA yielding increased rates of cell death and irreversible cell cycle arrest. As a defense against their frequent spontaneous breaks in chromosomes 1 and 16, ICF patients may be abnormally prone to chromosome break-induced apoptosis, non-apoptotic cell death, and permanent cell cycle arrest so as to minimize the number of cycling cells with spontaneous rearrangements. A similarly increased cell death and cycle-arrest response to chromosome breaks due to cancer-linked DNA hypomethylation might occur during carcinogenesis.  相似文献   

8.
Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF) syndrome is a rare autosomal recessive disorder that is characterized by a marked immunodeficiency, severe hypomethylation of the classical satellites 2 and 3 associated with disruption of constitutive heterochromatin, and facial anomalies. Sixty percent of ICF patients have mutations in the DNMT3B (DNA methyltransferase 3B) gene, encoding a de novo DNA methyltransferase. In the present study, we have shown that, in ICF lymphoblasts and peripheral blood, juxtacentromeric heterochromatic genes undergo dramatic changes in DNA methylation, indicating that they are bona fide targets of the DNMT3B protein. DNA methylation in heterochromatic genes dropped from about 80% in normal cells to approximately 30% in ICF cells. Hypomethylation was observed in five ICF patients and was associated with activation of these silent genes. Although DNA hypomethylation occurred in all the analyzed heterochromatic genes and in all the ICF patients, gene expression was restricted to some genes, every patient having his own group of activated genes. Histone modifications were preserved in ICF patients. Heterochromatic genes were associated with histone modifications that are typical of inactive chromatin: they had low acetylation on H3 and H4 histones and were slightly enriched in H3K9Me(3), both in ICF and controls. This was also the case for those heterochromatic genes that escaped silencing. This finding suggests that gene activation was not generalized to all the cells, but rather was restricted to a clonal cell population that may contribute to the phenotypic variability observed in ICF syndrome. A slight increase in H3K27 monomethylation was observed both in heterochromatin and active euchromatin in ICF patients; however, no correlation between this modification and activation of heterochromatic genes was found.  相似文献   

9.
《Epigenetics》2013,8(5):427-443
Immunodeficiency, Centromeric region instability, Facial anomalies (ICF; OMIM #242860) syndrome, due to mutations in the DNMT3B gene, is characterized by inheritance of aberrant patterns of DNA methylation and heterochromatin defects. Patients show variable agammaglobulinemia and a reduced number of T cells, making them prone to infections and death before adulthood. Other variable symptoms include facial dysmorphism, growth and mental retardation. Despite the recent advances in identifying the dysregulated genes, the molecular mechanisms, which underlie the altered gene expression causing ICF phenotype complexity, are not well understood. Held the recently-shown tight correlation between epigenetics and microRNAs (miRNAs), we searched for miRNAs regulated by DNMT3B activity, comparing cell lines from ICF patients with those from healthy individuals. We observe that eighty-nine miRNAs, some of which involved in immune function, development and neurogenesis, are dysregulated in ICF (LCLs) compared to wild-type cells. Significant DNA hypomethylation of miRNA CpG islands was not observed in cases of miRNA up-regulation in ICF cells, suggesting a more subtle effect of DNMT3B deficiency on their regulation; however, a modification of histone marks, especially H3K27 and H3K4 trimethylation, and H4 acetylation, was observed concomitantly with changes in microRNA expression. Functional correlation between miRNA and mRNA expression of their targets allow us to suppose a regulation either at mRNA level or at protein level. These results provide a better understanding of how DNA methylation and histone code interact to regulate the class of microRNA genes and enable us to predict molecular events possibly contributing to ICF condition.  相似文献   

10.
《Epigenetics》2013,8(1):71-82
The de novo DNA methyltransferase DNMT3B functions in establishing DNA methylation patterns during development. DNMT3B missense mutations cause immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. The restriction of Dnmt3b expression to neural progenitor cells, as well as the mild cognitive defects observed in ICF patients, suggests that DNMT3B may play an important role in early neurogenesis. We performed RNAi knockdown of DNMT3B in human embryonic stem cells (hESCs) in order to investigate the mechanistic contribution of DNMT3B to DNA methylation and early neuronal differentiation. While DNMT3B was not required for early neuroepithelium specification, DNMT3B deficient neuroepithelium exhibited accelerated maturation with earlier expression, relative to normal hESCs, of mature neuronal markers (such as NEUROD1) and of early neuronal regional specifiers (such as those for the neural crest). Genome-wide analyses of DNA methylation by MethylC-seq identified novel regions of hypomethylation in the DNMT3B knockdowns along the X chromosome as well as pericentromeric regions, rather than changes to promoters of specific dysregulated genes. We observed a loss of H3K27me3 and the polycomb complex protein EZH2 at the promoters of early neural and neural crest specifier genes during differentiation of DNMT3B knockdown but not normal hESCs. Our results indicate that DNMT3B mediates large-scale methylation patterns in hESCs and that DNMT3B deficiency in the cells alters the timing of their neuronal differentiation and maturation.  相似文献   

11.
12.
13.
14.
The present study reports for the first time on the numerical and structural chromosome anomalies that spontaneously arise in aging cultured fibroblast cells of Amphibia. The analyses were conducted on kidney fibroblasts of three anuran species with extremely divergent genome sizes (Bufo rubropunctatus, Scaphiopus holbrooki, Gastrotheca riobambae), in the sixth up to the 14th culture passage. The chromosomal rearrangements were identified by means of the 5-bromodeoxyuridine/deoxythymidine (BrdU/dT) replication banding technique. The aberrations can be either confined to a single chromosome, or else involve all chromosomes of the karyotype. The most frequent structural aberrations in the cell cultures of S. holbrooki and G. riobambae are tandem fusions between two or more chromosomes. These tandem fusions originating in vitro in long-termed cell cultures reflect the chromosome mutations which also took place during amphibian phylogenesis.  相似文献   

15.
Mutations in the DNMT3B DNA methyltransferase gene cause the ICF immunodeficiency syndrome. The targets of this DNA methyltransferase are CpG-rich heterochromatic regions, including pericentromeric satellites and the inactive X chromosome. The abnormal hypomethylation in ICF cells provides an important model system for determining the relationships between replication time, CpG island methylation, chromatin structure, and gene silencing in X chromosome inactivation.  相似文献   

16.
17.
ICF (Immunodeficiency, Centromeric instability and Facial anomalies) syndrome is a rare autosomal recessive disease caused by mutations in the DNA methyltransferase gene DNMT3B. To investigate the function of Dnmt3b in mouse development and to create animal models for ICF syndrome, we have generated three mutant alleles of Dnmt3b in mice: one carrying a deletion of the catalytic domain (null allele) and two carrying ICF-like missense mutations in the catalytic domain. The Dnmt3b null allele results in embryonic lethality from E14.5 to E16.5 with multiple tissue defects, including liver hypotrophy, ventricular septal defect and haemorrhage. By contrast, mice homozygous for the ICF mutations develop to term and some survive to adulthood. These mice show phenotypes that are reminiscent of ICF patients, including hypomethylation of repetitive sequences, low body weight, distinct cranial facial anomalies and T cell death by apoptosis. These results indicate that Dnmt3b plays an essential role at different stages of mouse development, and that ICF missense mutations cause partial loss of function. These mutant mice will be useful for further elucidation of the pathogenic and molecular mechanisms underlying ICF syndrome.  相似文献   

18.
Early- and late-passage cultures of Fischer rat thyroid cells differ in their growth properties and gap junction competency. Previous studies comparing early- and late-passage cultures exposed to gamma rays and proton beams revealed that differences in growth rate did not influence their responses; however, the presence of connexin 32 gap junctions conferred resistance to gamma radiation. To further assess differences in radiation quality, suspension cultures of early- and late-passage cells were exposed to accelerated iron ions, and their comparative biological responses were measured. The iron-ion-irradiated cells displayed sustained levels of incorporated dUTP, reflecting persistent DNA damage. These results were supported by the frequency of chromosomal damage measured by micronucleus formation. Iron-ion irradiation induced micronuclei at a rate of eight per gray per 100 binucleated cells scored in early-passage cells and nine per gray per 100 binucleated cells scored in late-passage cells. Relative to photons, the calculated radiobiological effectiveness for frequency of micronuclei was 5.7 and 6.4 for the early- and late-passage cultures, respectively (P > 0.05). Levels of apoptosis fluctuated as a function of dose, and modest increases above basal levels persisted throughout the 48-h period. The comparison of retained follicular structures revealed differences in the alpha components of the linear-quadratic dose-response curves (0.60 Gy(-1) for early-passage and 0.71 Gy(-1) for late-passage cultures, P < 0.014). Cell cycle phase redistribution resulted in a G2 arrest (P < 0.001) for both early- and late-passage cultures. In conclusion, the response of thyroid follicular cells to high-LET radiation was not influenced by the presence of gap junctions or the proliferative status of the target cells.  相似文献   

19.
PHA-stimulated growth of human lymphocytes in the presence of idoxuridine (IUdR) results in chromosomal decondensation and fragility of large heterochromatic regions. This instability is especially evident in the heterochromatic region of chromosome 9 (9h). A high frequency of micronuclei is seen in all IUdR-treated cultures. By a combination of chromosomal localization of induced aberrations, analysis of metaphases with prematurely condensed micronuclear chromatin, and specific staining of 9h in interphase micronuclei, it can be shown that 80-90% of all micronuclei contains 9h material. This pattern is found whether the heterochromatic region is situated on the long arm or the short arm of chromosome 9. These observations suggest that IUdR-induced micronucleation may be a valuable method for separation of the long and short arms of human chromosome 9.  相似文献   

20.
Sun L  Zhao H  Xu Z  Liu Q  Liang Y  Wang L  Cai X  Zhang L  Hu L  Wang G  Zha X 《Cellular signalling》2007,19(11):2255-2263
DNA methylation, which affects gene expression and chromatin stability, is catalyzed by DNA methyltransferases (DNMTs) of which DNMT1 possesses most abundant activity. PI3K/PKB pathway is an important pathway involved in cell proliferation, viability, and metabolism and often disrupted in cancer. Here we investigated the impact of PKB on DNMT1 and DNA methylation. Positive correlation between PKB-Ser473-phosphorylation and DNMT1 protein level in 17 human cell lines (p<0.01) and in 27 human bladder cancer tissues (p<0.05) was found. With activator, inhibitor, siRNA and constitutively active or dominant-negative plasmids of PKB, we found that PKB increased the protein level of DNMT1 without coordinate mRNA change, which was specific rather than due to cell-cycle change. PKB enhanced DNMT1 protein stability independent of de novo synthesis of any protein, which was attributed to down-regulation of N-terminal-120-amino-acids-dependent DNMT1 degradation via ubiquitin-proteasome pathway. Gsk3beta inhibitor rescued the decrease of DNMT1 by PKB inhibition, suggesting that Gsk3beta mediated the stabilization of DNMT1 by PKB. Then role of PKB regulating DNMT1 was investigated. Inhibition of PKB caused observable DNA hypomethylation and chromatin decondensation and DNMT1 overexpression partially reversed cell growth inhibition by PKB inhibition. In conclusion, our results suggested that PKB enhanced DNMT1 stability and maintained DNA methylation and chromatin structure, which might contribute to cancer cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号