首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dysmetabolic state in diabetes may lead to augmented synthesis of extracellular matrix (ECM) proteins. In the endothelial cells, we have previously demonstrated that glucose-induced fibronectin (FN) production and that of its splice variant, EDB(+)FN, is regulated by protein kinase B (PKB, also known as Akt). In this study, we investigated the role of Akt1 in ECM protein production in the organs affected by chronic diabetic complications. We studied Akt1/PKBalpha knockout mice and wild-type control littermates. To avoid confounding effects of systemic insulin, we used 30% galactose feeding to induce hyperhexosemia for 8 wk starting at 6 wk of age. We investigated FN mRNA, EDB(+)FN mRNA, and transforming growth factor (TGF)-beta mRNA expression, Akt phosphorylation, Akt kinase activity, and NF-kappaB and AP-1 activation in the retina, heart, and kidney. Renal and cardiac tissues were histologically examined. Galactose feeding caused significant upregulation of FN, EDB(+)FN, and TGF-beta in all tissues. FN protein levels paralleled mRNA. Such upregulation were prevented in Akt1-deficient galactose-fed mice. Galactose feeding caused ECM protein deposition in the glomeruli and in the myocardium, which was prevented in the Akt knockout mice. NF-kappaB and AP-1 activation was pronounced in galactose-fed wild-type mice and prevented in the galactose-fed Akt1/PKBalpha-deficient group. In the retina and kidney, Ser473 was the predominant site for Akt phosphorylation, whereas in the heart it was Thr308. Parallel experiment in streptozotocin-induced diabetic animals showed similar results. The data from this study indicate that hyperhexosemia-induced Akt/PKB activation may be an important mechanism leading to NF-kappaB and AP-1 activation and increased ECM protein synthesis in the organs affected by chronic diabetic complications.  相似文献   

2.
3.
Fibronectin (FN), a key extracellular matrix protein, is upregulated in target organs of diabetic angiopathy and in cultured cells exposed to high levels of glucose. FN has also been reported to undergo alternative splicing to produce the extra domain-B (ED-B) containing isoform, which is exclusively expressed during embryogenesis, tissue repair, and tumoral angiogenesis. The present study was aimed at elucidating the role and mechanism of endothelins (ETs) in FN and ED-B FN expression in diabetes. We investigated vitreous samples for ED-B FN expression from patients undergoing vitrectomy for proliferative diabetic retinopathy. Our results show increased FN and ED-B FN expression in the vitreous of diabetic patients in association with augmented ET-1. Using an antibody specific to the ED-B segment of FN, we show an increase in serum ED-B FN levels in patients with diabetic retinopathy and nephropathy. We further examined retinal tissues, as well as renal and cardiac tissues, from streptozotocin-induced diabetic rats. Diabetes increased FN and ED-B FN in all three organs, which was prevented by ET antagonist bosentan. To provide insight into the mechanism of glucose-induced and ET-mediated ED-B FN upregulation, we assayed endothelial cells (ECs). Inhibition of mitogen-activated protein kinase with pharmacological inhibitors and protein kinase B with dominant negative transfections prevented glucose- and ET-1-mediated FN and ED-B FN expression. Furthermore, treatment of cells exposed to high levels of glucose with ET antagonist prevented the activation of all signaling pathways studied and normalized glucose-induced ED-B FN expression. We then determined the functional significance of ED-B in ECs and show that ED-B FN is involved in vascular endothelial growth factor expression and cellular proliferation. These studies show that glucose-induced and ET-mediated FN and ED-B FN expressions involve complex interplays between signaling pathways and that ET may represent an ideal target for therapy in chronic diabetic complications.  相似文献   

4.
5.

Aims

MicroRNAs (miRNAs) play important roles in several biological processes. In this study, we investigated the role of miR-1, an endothelin-1 (ET-1) targeting miRNA, in endothelial cells (ECs) and tissues of diabetic animals. ET-1 is known to be of pathogenetic significance in several chronic diabetic complications.

Main methods

PCR array was used to identify alterations of miRNA expression in ECs exposed to glucose. miR-1 expression was validated by TaqMan real-time PCR assay. Human retinal ECs (HRECs) and human umbilical vein ECs (HUVECs) exposed to various glucose levels with or without miR-1 mimic transfection, and tissues from streptozotocin-induced diabetic animals after two months of follow-up, were examined for miR-1 expression, as well as ET-1 and fibronectin (FN) mRNA and protein levels.

Key findings

Array analyses showed glucose-induced alterations of 125 miRNAs (out of 381) in ECs exposed to 25 mM glucose compared to 5 mM glucose. Fifty-one miRNAs were upregulated and 74 were downregulated. 25 mM glucose decreased miR-1 expression and increased ET-1 mRNA and protein levels. miR-1 mimic transfection prevented HG-induced ET-1 upregulation. Furthermore, glucose induced upregulation of FN, which is mediated partly by ET-1, was also prevented by such transfection.Diabetic animals showed decreased miR-1 expression in the retina, heart and kidneys. In parallel, ET-1 mRNA expressions were increased in these tissues of diabetic animals, in association with upregulation of FN.

Significance

These results indicate a novel glucose-induced mechanism of tissue damage, in which miR-1 regulates ET-1 expressions in diabetes. Identifying such mechanisms may lead to RNA based treatment for diabetic complications.  相似文献   

6.
7.
8.
9.
10.
11.
Although past studies have demonstrated decreased renal matrix metalloproteinase (MMP) activity in type 1 diabetes and in mesangial cells grown under high glucose conditions, renal MMP expression and activity in type 2 diabetes and the regulation of MMPs by profibrotic factors involved in diabetic renal complications such as endothelin-1 (ET-1) remained unknown. The renal expression and activity of MMPs in type 2 diabetic Goto-Kakizaki (GK) rats treated with vehicle or ET(A) receptor selective antagonist ABT-627 for 4 wk were assessed by gelatin zymography, fluorogenic gelatinase assay, and immunoblotting. In addition, expression and phosphorylation of epidermal growth factor receptor (EGFR) and connective tissue growth factor were evaluated by immunoblotting. Renal sections stained with Masson trichrome were used to investigate kidney structure. MMP-2 activity and protein levels were significantly increased in both cortical and medullary regions in the GK rats. Membrane-bound MMP (MT1-MMP), MMP-9, and fibronectin levels were also increased, and ABT-627 treatment did not have an effect on MMP activity and expression. Histological analysis of kidneys did not reveal any structural changes. Phosphorylation of EGFR was significantly increased in the diabetic animals, and ABT-627 treatment prevented this increase, suggesting ET-1-mediated transactivation of EGFR. These results suggest that there is early upregulation of renal MMPs in the absence of any kidney damage. Although the ET(A) receptor subtype is not involved in the early activation of MMPs in type 2 diabetes, ET-1 contributes to transactivation of growth-promoting and profibrotic EGFR.  相似文献   

12.
Diabetic nephropathy is characterized by accumulation of glomerular extracellular matrix proteins, such as fibronectin (FN). Here, we investigated whether sphingosine kinase (SphK)1 pathway is responsible for the elevated FN expression in diabetic nephropathy. The SphK1 pathway and FN expression were examined in streptozotocin-induced diabetic rat kidney and glomerular mesangial cells (GMC) exposed to high glucose (HG). FN up-regulation was concomitant with activation of the SphK1 pathway as reflected in an increase in the expression and activity of SphK1 and sphingosine 1-phosphate (S1P) production in both diabetic kidney and HG-treated GMC. Overexpression of wild-type SphK1 (SphK(WT)) significantly induced FN expression, whereas treatment with a SphK inhibitor, N,N-dimethylsphingosine, or transfection of SphK1 small interference RNA or dominant-negative SphK1 (SphK(G82D)) abolished HG-induced FN expression. Furthermore, addition of exogenous S1P significantly induced FN expression in GMC with an induction of activator protein 1 (AP-1) activity. Inhibition of AP-1 activity by curcumin attenuated the S1P-induced FN expression. Finally, by inhibiting SphK1 activity, both N,N-dimethylsphingosine and SphK(G82D) markedly attenuated the HG-induced AP-1 activity. Taken together, these results demonstrated that the SphK1 pathway plays a critical role in matrix accumulation in GMC under diabetic condition, suggesting that the SphK1 pathway could be a potential therapeutic target for diabetic nephropathy.  相似文献   

13.
14.
15.
Increased accumulation of NT (3‐nitrotyrosine) and PARylated [poly(ADP‐ribosyl)ated] proteins in the tissues of diabetics are associated with diabetes complications (diabetes neuropathy, nephropathy and retinopathy). Red wine (its polyphenols are considered to be the main active components) can act as ROS (reactive oxygen species) scavengers, iron chelators and enzyme modulators. This study is novel in investigating the effect of red wine in preventing the accumulation of NT and PARylated proteins in the sciatic nerve, DRG (dorsal root ganglia), spinal cord, kidney and retina of diabetic animals. We have shown that during the experiment the body weight of control and diabetic groups of rats with consumption of red wine was significantly increased, by 52% and 19% accordingly. The significant increase in the content of NT in the sciatic nerve, DRG, spinal cord, kidney and retina, and PARylated proteins in the sciatic nerve, renal glomeruli and retinae of diabetic rats was partly or completely prevented by treatment with red wine. Red wine and its polyphenol preparations might be a promising option in the prevention and treatment of diabetic complications.  相似文献   

16.
17.
18.
The present study was designed to evaluate whether microRNA-146a and its adapter proteins (TRAF6 and IRAK1) are involved in the pathogenesis of diabetes-induced kidney damage. Male Sprague–Dawley rats were divided into control and diabetic groups (n = 6 in each). Diabetes was induced by injection of streptozotocin (55 mg/kg; i.p.) in 12 h fasted rats. Diabetic kidney damage was diagnosed by renal hypertrophy, thickened glomerular basement membrane, widened filtration slits, mesangial expansion, as well as by elevated levels of blood urea and creatinine in diabetic rats 2 months after induction of diabetes. While the expression of NF-κB mRNA and miR-146a were increased in diabetic kidney compared to the sham controls (p < 0.01 for both comparisons), the mRNA levels of IRAK1 and TRAF6 did not statistically reduce. The NF-κB activity and the concentrations of TNF-α, IL-6 and IL-1β in the kidney of diabetic rats were higher than the kidney of controls (p < 0.05 for TNF-α and NF-κB; p < 0.01 for IL-6 and IL-1β). Our results indicate that the upregulation of miR-146a was not accompanied by downregulation of inflammatory mediators in diabetic kidney. It is possible that a defect in the miR-146a-mediated negative loop provides a situation for sustained activation of NF-κB and its targets to promote cells toward abnormalities.  相似文献   

19.
20.
Insulin-like growth factor I (IGF-I) accumulates in the kidney following the onset of diabetes, initiating diabetic renal hypertrophy. Increased renal IGF-I protein content, which is not reflected in messenger RNA (mRNA) levels, suggests that renal IGF-I accumulation is due to sequestration of circulating IGF-I rather than to local synthesis. It has been suggested that IGF-I is trapped in the kidney by IGF binding protein 1 (IGFBP-1). We administered purified human IGFBP-1 (hIGFBP-1) to nondiabetic and diabetic mice as three daily sc injections for 14 days, starting 6 days after induction of streptozotocin diabetes when the animals were overtly diabetic. Markers of early diabetic renal changes (i.e., increased kidney weight, glomerular volume, and albuminuria) coincided with accumulation of renal cortical IGF-I despite decreased mRNA levels in 20-day diabetic mice. Human IGFBP-1 administration had no effect on increased kidney weight or albuminuria in early diabetes, although it abolished renal cortical IGF-I accumulation and glomerular hypertrophy in diabetic mice. Increased IGF-I levels in kidneys of normal mice receiving hIGFBP-1 were not reflected on kidney parameters. IGFBP-1 administration in diabetic mice had only minor effects on diabetic renal changes. Accordingly, these results did not support the hypothesis that IGFBP-1 plays a major role in early renal changes in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号