首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation (Ds) transposon lines with insertions on all 5 Arabidopsis chromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsis genome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsis lines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

2.
We have generated Dissociation (Ds) element insertions throughout the Arabidopsis genome as a means of random mutagenesis. Here, we present the molecular analysis of genomic sequences that flank the Ds insertions of 931 independent transposant lines. Flanking sequences from 511 lines proved to be identical or homologous to DNA or protein sequences in public databases, and disruptions within known or putative genes were indicated for 354 lines. Because a significant portion (45%) of the insertions occurred within sequences defined by GenBank BAC and P1 clones, we were able to assess the distribution of Ds insertions throughout the genome. We discovered a significant preference for Ds transposition to the regions adjacent to nucleolus organizer regions on chromosomes 2 and 4. Otherwise, the mapped insertions appeared to be evenly dispersed throughout the genome. For any given gene, insertions preferentially occurred at the 5' end, although disruption was clearly possible at any intragenic position. The insertion sites of >500 lines that could be characterized by reference to public databases are presented in a tabular format at http://www.plantcell. org/cgi/content/full/11/12/2263/DC1. This database should be of value to researchers using reverse genetics approaches to determine gene function.  相似文献   

3.
The ultimate goal of genome research on the model flowering plant Arabidopsis thaliana is the identification of all of the genes and understanding their functions. A major step towards this goal, the genome sequencing project, is nearing completion; however, functional studies of newly discovered genes have not yet kept up to this pace. Recent progress in large-scale insertional mutagenesis opens new possibilities for functional genomics in Arabidopsis. The number of T-DNA and transposon insertion lines from different laboratories will soon represent insertions into most Arabidopsis genes. Vast resources of gene knockouts are becoming available that can be subjected to different types of reverse genetics screens to deduce the functions of the sequenced genes.  相似文献   

4.
Distribution and characterization of over 1000 T-DNA tags in rice genome   总被引:22,自引:0,他引:22  
We generated T-DNA insertions throughout the rice genome for saturation mutagenesis. More than 1,000 flanking sequences were mapped on 12 rice chromosomes. Our results showed that T-DNA tags were not randomly spread on rice chromosomes and were preferentially inserted in gene-rich regions. Few insertions (2.4%) were found in repetitive regions. T-DNA insertions in genic (58.1%) and intergenic regions (41.9%) showed a good correlation with the predicted size distribution of these sequences in the rice genome. Whereas, obvious biases were found for the insertions in the 5'- and 3'-regulatory regions outside the coding regions both at 500-bp size and in introns rather than in exons. Such distribution patterns and biases for T-DNA integration in rice are similar to that of the previous report in Arabidopsis, which may result from T-DNA integration mechanism itself. Rice will require approximately the same number of T-DNA insertions for saturation mutagenesis as will Arabidopsis. A database of the T-DNA insertion sites in rice is publicly available at our web site (http://www.genomics.zju.edu.cn/ricetdna).  相似文献   

5.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation(Ds) transposon lines with insertions on all 5 Arabidopsischromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsisgenome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsislines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

6.
A high-throughput Arabidopsis reverse genetics system   总被引:16,自引:0,他引:16       下载免费PDF全文
A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymmetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from approximately 100000 transformed lines. A total of 85108 TAIL-PCR products from 52964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org.  相似文献   

7.
More than 10 000 transposon-tagged lines were constructed by using the Activator (Ac)/Dissociation (Ds) system in order to collect insertional mutants as a useful resource for functional genomics of Arabidopsis. The flanking sequences of the Ds element in the 11 800 independent lines were determined by high-throughput analysis using a semi-automated method. The sequence data allowed us to map the unique insertion site on the Arabidopsis genome in each line. The Ds element of 7566 lines is inserted in or close to coding regions, potentially affecting the function of 5031 of 25 000 Arabidopsis genes. Half of the lines have Ds insertions on chromosome 1 (Chr. 1), in which donor lines have a donor site. In the other half, the Ds insertions are distributed throughout the other four chromosomes. The intrachromosomal distribution of Ds insertions varies with the donor lines. We found that there are hot spots for Ds transposition near the ends of every chromosome, and we found some statistical preference for Ds insertion targets at the nucleotide level. On the basis of systematic analysis of the Ds insertion sites in the 11 800 lines, we propose the use of Ds-tagged lines with a single insertion in annotated genes for systematic analysis of phenotypes (phenome analysis) in functional genomics. We have opened a searchable database of the insertion-site sequences and mutated genes (http://rarge.gsc.riken.go.jp/) and are depositing these lines in the RIKEN BioResource Center as available resources (http://www.brc.riken.go.jp/Eng/).  相似文献   

8.
A majority of the proteins of the chloroplast are encoded by the nuclear genome, and are post‐translationally targeted to the chloroplast. From databases of tagged insertion lines at international seed stock centers and our own stock, we selected 3246 Ds/Spm (dissociator/suppressor–mutator) transposon‐ or T‐DNA‐tagged Arabidopsis lines for genes encoding 1369 chloroplast proteins (about 66% of the 2090 predicted chloroplast proteins) in which insertions disrupt the protein‐coding regions. We systematically observed 3‐week‐old seedlings grown on agar plates, identified mutants with abnormal phenotypes and collected homozygous lines with wild‐type phenotypes. We also identified insertion lines for which no homozygous plants were obtained. To date, we have identified 111 lines with reproducible seedling phenotypes, 122 lines for which we could not obtain homozygotes and 1290 homozygous lines without a visible phenotype. The Chloroplast Function Database presents the molecular and phenotypic information obtained from this resource. The database provides tools for searching for mutant lines using Arabidopsis Genome Initiative (AGI) locus numbers, tagged line numbers and phenotypes, and provides rapid access to detailed information on the tagged line resources. Moreover, our collection of insertion homozygotes provides a powerful tool to accelerate the functional analysis of nuclear‐encoded chloroplast proteins in Arabidopsis. The Chloroplast Function Database is freely available at http://rarge.psc.riken.jp/chloroplast/ . The homozygous lines generated in this project are also available from the various Arabidopsis stock centers. We have donated the insertion homozygotes to their originating seed stock centers.  相似文献   

9.
Site preferences of insertional mutagenesis agents in Arabidopsis   总被引:5,自引:0,他引:5       下载免费PDF全文
Pan X  Li Y  Stein L 《Plant physiology》2005,137(1):168-175
  相似文献   

10.
A new system for insertional mutagenesis based on the maize Enhancer/Suppressor-mutator (En/Spm) element was introduced into Arabidopsis. A single T-DNA construct carried a nonautonomous defective Spm (dSpm) element with a phosphinothricin herbicide resistance (BAR) gene, a transposase expression cassette, and a counterselectable gene. This construct was used to select for stable dSpm transpositions. Treatments for both positive (BAR) and negative selection markers were applicable to soil-grown plants, allowing the recovery of new transpositions on a large scale. To date, a total of 48,000 lines in pools of 50 have been recovered, of which approximately 80% result from independent insertion events. DNA extracted from these pools was used in reverse genetic screens, either by polymerase chain reaction (PCR) using primers from the transposon and the targeted gene or by the display of insertions whereby inverse PCR products of insertions from the DNA pools are spotted on a membrane that is then hybridized with the probe of interest. By sequencing PCR-amplified fragments adjacent to insertion sites, we established a sequenced insertion-site database of 1200 sequences. This database permitted a comparison of the chromosomal distribution of transpositions from various T-DNA locations.  相似文献   

11.
Transposon tagging is a useful tool for biological studies. Transposon insertions have been used to obtain new mutants which are extremely helpful in understanding gene function. These insertions immediately provide a means to isolate the corresponding genes. Transposon tagging has also been used to clone genes previously defined by point mutations. In addition, transposon insertions into cloned genes that lack mutations can be generated to facilitate functional analysis. The maize Ac/Ds transposon elements are known to transpose to local sites with high frequencies and have been shown to function in several dicots. To generate a collection of Ds elements for the purpose of targeted insertional mutagenesis of mapped genes in Arabidopsis, we have mapped 44 Ds insertions by simple sequence length polymorphism (SSLP). Because the Arabidopsis genome project is advancing rapidly, many genes will be discovered whose functions are unknown. The mapped 44 Ds insertions will be a useful resource for post-genome analysis of gene functions in Arabidopsis.  相似文献   

12.
A key component of a sound functional genomics infrastructure is the availability of a knockout mutant for every gene in the genome. A fruitful approach to systematically knockingout genes in the plant Arabidopsis thaliana has been the use of transferred-DNA (T-DNA) from Agrobacterium tumefaciens as an insertional mutagen. One of the assumptions underlying the use of T-DNA as a mutagen is that the insertion of these DNA elements into the Arabidopsis genome occurs at randomly selected locations. We have directly investigated the distribution of T-DNA insertions sites in populations of transformed Arabidopsis using two different approaches. To begin with, we utilized a polymerase chain reaction (PCR) procedure to systematically catalog the precise locations of all the T-DNA elements inserted within a 65 kb segment of chromosome IV. Of the 47 T-DNA insertions identified, 30% were found within the coding regions of genes. We also documented the insertion of T-DNA elements within the centromeric region of chromosome IV. In addition to these targeted T-DNA screens, we also mapped the genomic locations of 583 randomly chosen T-DNA elements by sequencing the genomic DNA flanking the insertion sites from individual T-DNA-transformed lines. 35% of these randomly chosen T-DNA insertions were located within the coding regions of genes. For comparison, coding sequences account for 44% of the Arabidopsis genome. Our results demonstrate that there is a small bias towards recovering T-DNA insertions within intergenic regions. However, this bias does not limit the utility of T-DNA as an effective insertional mutagen for use in reverse-genetic strategies.  相似文献   

13.
A systematic analysis of T-DNA insertion events in Magnaporthe oryzae   总被引:2,自引:0,他引:2  
We describe here the analysis of random T-DNA insertions that were generated as part of a large-scale insertional mutagenesis project for Magnaporthe oryzae. Chromosomal regions flanking T-DNA insertions were rescued by inverse PCR, sequenced and used to search the M. oryzae genome assembly. Among the 175 insertions for which at least one flank was rescued, 137 had integrated in single-copy regions of the genome, 17 were in repeated sequences, one had no match to the genome, and the remainder were unassigned due to illegitimate T-DNA integration events. These included in order of abundance: head-to-tail tandem insertions, right border excision failures, left border excision failures and insertion of one T-DNA into another. The left borders of the T-DNA were frequently truncated and inserted in sequences with micro-homology to the left terminus. By contrast the right borders were less prone to degradation and appeared to have been integrated in a homology-independent manner. Gross genome rearrangements rarely occurred when the T-DNAs integrated in single-copy regions, although most insertions did cause small deletions at the target site. Significant insertion bias was detected, with promoters receiving two times more T-DNA hits than expected, and open reading frames receiving three times fewer. In addition, we found that the distribution of T-DNA inserts among the M. oryzae chromosomes was not random. The implications of these findings with regard to saturation mutagenesis of the M. oryzae genome are discussed.  相似文献   

14.
15.
16.
SUMMARY: GABI-Kat SimpleSearch is a database of flanking sequence tags (FSTs) of T-DNA mutagenized Arabidopsis thaliana lines that were generated by the GABI-Kat project. Sequences flanking the T-DNA insertion sites were aligned to the A.thaliana genome sequence, annotated with information about the FST, the insertion site and the line from which the FST was derived. A web interface permits text-based as well as sequence-based searches for relevant insertions. GABI-Kat SimpleSearch aims to help biologists to quickly find T-DNA insertion mutants for their research. AVAILABILITY: http://www.mpiz-koeln.mpg.de/GABI-Kat/  相似文献   

17.
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.  相似文献   

18.
A collection of Activator (Ac)-containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed that the majority of insertions are in hypomethylated, low- or single-copy sequences, indicating an insertion site preference for genic sequences in the genome. However, a number of Ac transposition events were to highly repetitive sequences in the genome. We present evidence that suggests Ac expression is regulated by genomic context resulting in subtle variations in Ac-mediated excision patterns. These tr-Ac lines can be utilized to isolate genes with unknown function, to conduct fine-scale genetic mapping experiments, and to generate novel allelic diversity in applied breeding programs.  相似文献   

19.
B. Dalby  A. J. Pereira    LSB. Goldstein 《Genetics》1995,139(2):757-766
We developed a screening approach that utilizes an inverse polymerase chain reaction (PCR) to detect P element insertions in or near previously cloned genes in Drosophila melanogaster. We used this approach in a large scale genetic screen in which P elements were mobilized from sites on the X chromosome to new autosomal locations. Mutagenized flies were combined in pools, and our screening approach was used to generate probes corresponding to the sequences flanking each site of insertion. These probes then were used for hybridization to cloned genomic intervals, allowing individuals carrying insertions in them to be detected. We used the same approach to perform repeated rounds of sib-selection to generate stable insertion lines. We screened 16,100 insert bearing individuals and recovered 11 insertions in five intervals containing genes encoding members of the kinesin superfamily in Drosophila melanogaster. In addition, we recovered an insertion in the region including the Larval Serum Protein-2 gene. Examination by Southern hybridization confirms that the lines we recovered represent genuine insertions in the corresponding genomic intervals. Our data indicates that this approach will be very efficient both for P element mutagenesis of new genomic regions and for detection and recovery of ``local' P element transposition events. In addition, our data constitutes a survey of preferred P element insertion sites in the Drosophila genome and suggests that insertion sites that are mutable at a rate of ~10(-4) are distributed every 40-50 kb.  相似文献   

20.
Reverse genetics using insertional mutagenesis is an efficient experimental strategy for assessing gene functions. The maize Enhancer-Inhibitor (En-I) transposable element system was used to develop an effective reverse genetics strategy in Arabidopsis based on transposons. To generate insertion mutations in a specific chromosomal region we developed a strategy for local transposition mutagenesis. A small population of 960 plants, containing independent I transpositions was used to study local mutagenesis on chromosome IV of Arabidopsis. A total of 15 genes, located on chromosome IV, were tested for I insertions and included genes identified by the European ESSA I sequencing programme. These genes were of particular interest since homologies to other genes and gene families were identified, but their exact functions were unknown. Somatic insertions were identified for all genes tested in a few specific plants. Analysis of these progeny plants over several generations revealed that the ability to generate somatic insertions in the target gene were heritable. These genotypes that show high levels of somatic insertions can be used to identify germinal insertions in the progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号