首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TGF-beta signaling by Smad proteins   总被引:26,自引:0,他引:26  
  相似文献   

2.
3.
Je HD  Sohn UD 《Molecules and cells》2007,23(2):175-181
The present study was undertaken to determine whether SM22alpha participates in the regulation of vascular smooth muscle contractility using SM22alpha knockout mice and, if so, to investigate the mechanisms involved. Aortic ring preparations were mounted and equilibrated in organ baths for 60 min before observing contractile responses to 50 mM KCl, and then exposed to contractile agents such as phenylephrine and phorbol ester. Measurement of isometric contractions using a computerized data acquisition system was combined with molecular or cellular experiments. Interestingly, the aortas from SM22alpha-deficient mice (SM22(-/-LacZ)) displayed an almost three-fold increase in the level of SM22beta protein compared to wild-type mice, but no change in the levels of caldesmon, actin, desmin or calponin. Ca2+-independent contraction in response to phenylephrine or phorbol ester was significantly decreased in the SM22alpha-deficient mice, whereas in the presence of Ca2+ neither contraction nor subcellular translocation of myosin light chain kinase (MLCK) in response to phenylephrine or 50 mM KCl was significantly affected. A decrease in phosphorylation of extracellular signal regulated kinase (ERK) 1/2 was observed in the SM22alpha-deficient mice and this may be related to the decreased vascular contractility. Taken together, this study provides evidence for a pivotal role of SM22alpha in the regulation of Ca2+-independent vascular contractility.  相似文献   

4.
5.
6.
7.
8.
It is now clear that resident myofibroblasts play a central role in the mediation of tissue fibrosis. The aim of the work outlined in this study is to increase our understanding of the mechanisms which drive the phenotypic and functional changes associated with the differentiation process. We have used an in vitro model of transforming growth factor-beta1 (TGF-beta1)-induced pulmonary fibroblast-myofibroblast differentiation to examine the role of the TGF-beta1 Smad protein signaling intermediates, in alterations of fibroblast phenotype and function associated with terminal differentiation. TGF-beta1 induced marked alteration in cell phenotype, such that cells resembled "epithelioid-postmitotic fibroblasts." This was associated with marked reorganization of the actin cytoskeleton and upregulation of alphaSMA gene expression. TGF-beta1 stimulation also induced alphaSMA protein expression with increased incorporation of alphaSMA into stress fibers. Following stimulation with TGF-beta1, subsequent addition of serum-free medium did not reverse TGF-beta1-induced morphological change, suggesting that TGF-beta1 induced a relatively stable alteration in fibroblast cell phenotype. Functionally, these phenotypic changes were associated with induction of type I, type III, and type IV collagen gene expression and an increase in the concentrations of the respective collagens in the cell culture supernatant. The role of Smad proteins in terminal differentiation of fibroblasts was examined by transfection of cells, with expression vectors for the TGFbeta1 receptor-regulated Smads (R-Smads) or the co-Smad, Smad 4. Transfection with Smad2 but not Smad3 resulted in TGF-beta1 independent alteration in fibroblast cell phenotype, up-regulation of alphaSMA mRNA and reorganization of the actin cytoskeleton. Transfection with Smad4 also induced alteration in cell phenotype, although this was not as pronounced as the effect of overexpression of Smad2. Overexpression of the Smad2, Smad3, or Smad4 proteins was associated with increased production of all collagen types. The study suggests that the phenotypic and functional changes associated with TGF-beta1-induced fibroblast terminal differentiation are differentially regulated by Smad proteins.  相似文献   

9.
10.
11.
12.
13.
14.
Smad3 mediates TGF-beta1 induction of VEGF production in lung fibroblasts   总被引:5,自引:0,他引:5  
Transforming growth factor-beta1 (TGF-beta1) is a key factor in a variety of physiological and pathological processes. Vascular endothelial growth factor (VEGF) is a key angiogenic factor, and vascular change is one of the features of airway remodeling. We examined the effect of TGF-beta1 on VEGF production by fibroblasts from mice lacking expression of Smad2 or Smad3 as well as human lung fibroblasts treated with or without Smad2 or Smad3 siRNA. TGF-beta1 stimulated VEGF production by fibroblasts from Smad2 deficient animals and wildtype animals. In contrast, TGF-beta1 did not affect VEGF production by fibroblasts from Samd3 deficient mice. Similarly, TGF-beta1 failed to stimulate VEGF production by HFL-1 cells treated with Samd3 siRNA but significantly increased VEGF production by the cells treated with Smad2 siRNA. These result suggest that TGF-beta1 stimulation of VEGF production by fibroblasts is regulated by Smad3 but not by Smad2 signaling.  相似文献   

15.
16.
17.
Amino acid sequence of chicken gizzard smooth muscle SM22 alpha   总被引:4,自引:0,他引:4  
The complete amino acid sequence of SM22 alpha, a novel and abundant 22-kDa protein from chicken gizzard smooth muscle, was determined by a combination of automated and manual Edman degradation methods on fragments produced by suitable chemical and proteolytic cleavages. The protein consists of a single polypeptide chain of 197 residues, has a Mr of 21, 978, and a net charge of +4.5 at neutral pH. The pattern of alternating hydrophilic and hydrophobic regions throughout the length of SM23 alpha is typical of a globular protein. The overall secondary structural analysis, using several algorithms based on the sequence, predicts approximately 31% alpha-helix, 24% beta-sheet, 18% beta-turn, and 27% random coil. A search against the National Biomedical Research Foundation Protein Sequence Databank (Washington) and GenBank (Los Alamos) failed to demonstrate significant similarity with any other protein of known sequence.  相似文献   

18.
TGF-beta signalling through the Smad pathway   总被引:2,自引:0,他引:2  
  相似文献   

19.
Transcriptional control by the TGF-beta/Smad signaling system   总被引:65,自引:0,他引:65       下载免费PDF全文
  相似文献   

20.
BACKGROUND: Gene transfer into vascular smooth muscle cells (vsmcs) holds promise for studying the pathogenesis of arterial disorders. However, a potential limitation of vectors with heterologous promoters is organ toxicity resulting from unrestricted transgene expression. Vascular smooth muscle cell-specific gene expression could increase the safety of vectors for vascular diseases. MATERIALS AND METHODS: To develop vectors that target gene expression to vsmcs, we constructed vectors encoding human placental alkaline phosphatase (hpAP) and chloramphenicol transferase (CAT) driven by a 441-bp region of the murine SM22alpha promoter (AdSM22alpha-hpAP). RESULTS: Transfection of AdSM22alpha-hpAP into vascular and nonvascular cells resulted in the expression of alkaline phosphatase (AP) in primary arterial and venous smcs, but not in primary endothelial cells or National Institutes of Health (NIH) 3T3 cells. Expression of AP was observed on 32.5 +/- 1.4% of primary pig vsmcs-infected AdSM22alpha-hpAP at a multiplicity of infection (MOI) of 500; whereas, infection with AdCMV-hpAP resulted in 100 +/- 0.0% expression at a MOI of 250. In vitro, expression from the heterologous cytomegalovirus (CMV) promoter was approximately 10(3)-fold higher in vsmcs, compared with the SM22alpha promoter. Following introduction of AdSM22alpha-hpAP vectors into balloon-injured pig arteries, AP recombinant protein was detected in neointimal (2.23 +/- 1.14%) and medial (0.56 +/- 0.21%) smcs, but not in endothelial or adventitial cells. In contrast, AdCMV-hpAP vectors led to AP expression in intimal endothelial and smcs cells (39.14 +/- 10.09%) and medial smcs (2.84 +/- 1.05%). AP expression was not observed in endothelial or vsmcs following transfection with the control vector, adenoviral vector lacking E1 (AddeltaE1). CONCLUSIONS: The SM22alpha promoter programs recombinant gene expression exclusively to vascular smcs in vitro and in vivo. Although expression levels are lower than with heterologous promoters, these vectors may provide a safe and effective tool for gene therapy of vascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号