首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
This study assessed ultrastructural muscle damage in young (20-30 yr old) vs. older (65-75 yr old) men after heavy-resistance strength training (HRST). Seven young and eight older subjects completed 9 wk of unilateral leg extension HRST. Five sets of 5-20 repetitions were performed 3 days/wk with variable resistance designed to subject the muscle to near-maximal loads during every repetition. Biopsies were taken from the vastus lateralis of both legs, and muscle damage was quantified via electron microscopy. Training resulted in a 27% strength increase in both groups (P < 0.05). In biopsies before training in the trained leg and in all biopsies from untrained leg, 0-3% of muscle fibers exhibited muscle damage in both groups (P = not significant). After HRST, 7 and 6% of fibers in the trained leg exhibited damage in the young and older men, respectively (P < 0.05, no significant group differences). Myofibrillar damage was primarily focal, confined to one to two sarcomeres. Young and older men appear to exhibit similar levels of muscle damage at baseline and after chronic HRST.  相似文献   

2.
The purpose of this study was to examine the effects of medicine ball training on the strength and power in young female handball athletes. Twenty-one young female handball players (age, 16.9 ± 1.2 years) were randomly assigned to experimental and control groups. Experimental group (n = 11) participated in a 12-week medicine ball training program incorporated into the regular training session, whereas controls (n = 10) participated only in the regular training. Performance in the medicine ball throws in standing and sitting positions, 1 repetition maximum (1RM) bench and shoulder press, and power test at 2 different loads (30 and 50% of 1RM) on bench and shoulder press were assessed at pre- and posttraining testing. The athletes participating in the medicine ball training program made significantly greater gains in all medicine ball throw tests compared with the controls (p < 0.01). Also, the experimental group made significantly greater gains in bench and shoulder press power than control group (p < 0.05). Both training groups (E) and (C) significantly (p < 0.05) increased 1RM bench and shoulder strength, with no differences observed between the groups. Additionally, medicine ball throw tests showed stronger correlation with power tests, than with 1RM tests. These data suggest that 12-week medicine ball training, when incorporated into a regular training session, can provide greater sport-specific training improvements in the upper body for young female handball players.  相似文献   

3.
The purpose of this investigation was to determine whether heavy-resistance exercise training alters the skeletal muscle fiber composition of young rats. Ten male Long Evans rats (3 wk old) were trained to lift progressively heavier weights, which were secured to the rats' tails, while they ascended a 40-cm 90 degree mesh incline 20 times/day 5 days/wk for a food reward. After 8 wk of training, they lifted 406 +/- 19 (SD) g in addition to their body weight (261 +/- 9 g). Compared with 10 sedentary pair-fed rats, no hypertrophy of forelimb muscles (biceps brachii and brachialis) was observed, but rectus femoris wet and dry weights were greater (P less than 0.01) in the trained group. In the deep region of the rectus femoris, type I fiber area was similar between groups, but the trained rats had both a lower (P less than 0.05) percentage of type I fibers and a smaller (P less than 0.05) portion of the total area occupied by type I fibers. The percentage of type IIb fibers in the deep region of the rectus femoris was also similar between groups, but the portion of the deep area composed of type IIb fibers was greater (P less than 0.05) in the trained rats. In the superficial region of the rectus femoris, the trained rats' type IIb fibers were larger (P less than 0.01) and occupied a greater (P less than 0.05) portion of the superficial muscle area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This study examined changes in myostatin gene expression in response to strength training (ST). Fifteen young and older men (n = 7) and women (n = 8) completed a 9-week heavy-resistance unilateral knee extension ST program. Muscle biopsies were obtained from the dominant vastus lateralis before and after ST. In addition to myostatin mRNA levels, muscle volume and strength were measured. Total RNA was reverse transcribed into cDNA, and myostatin mRNA was quantified using quantitative PCR by standard fluorescent chemistries and was normalized to 18S rRNA levels. A 37% decrease in myostatin expression was observed in response to ST in all subjects combined (2.70 +/- 0.36 vs 1.69 +/- 0.18 U, arbitrary units; P < 0.05). Though the decline in myostatin expression was similar regardless of age or gender, the small number of subjects in these subgroups suggests that this observation needs to be confirmed. No significant correlations were observed between myostatin expression and any muscle strength or volume measure. Although further work is necessary to clarify the findings, these data demonstrate that myostatin mRNA levels are reduced in response to heavy-resistance ST in humans.  相似文献   

5.
The impact of adding heavy-resistance training to increase leg-muscle strength was studied in eight cycling- and running-trained subjects who were already at a steady-state level of performance. Strength training was performed 3 days/wk for 10 wk, whereas endurance training remained constant during this phase. After 10 wk, leg strength was increased by an average of 30%, but thigh girth and biopsied vastus lateralis muscle fiber areas (fast and slow twitch) and citrate synthase activities were unchanged. Maximal O2 uptake (VO2max) was also unchanged by heavy-resistance training during cycling (55 ml.kg-1.min-1) and treadmill running (60 ml.kg-1.min-1); however, short-term endurance (4-8 min) was increased by 11 and 13% (P less than 0.05) during cycling and running, respectively. Long-term cycling to exhaustion at 80% VO2max increased from 71 to 85 min (P less than 0.05) after the addition of strength training, whereas long-term running (10 km times) results were inconclusive. These data do not demonstrate any negative performance effects of adding heavy-resistance training to ongoing endurance-training regimens. They indicate that certain types of endurance performance, particularly those requiring fast-twitch fiber recruitment, can be improved by strength-training supplementation.  相似文献   

6.
To assess the effects of inordinate physical inactivity on the distensibility of the aorta we measured aortic pulse wave velocity (APWV) and estimated physical activity index (PAI) by a 7-day total activity recall in visually impaired subjects. A group of 12 blind students (blind group) and 28 sighted male students, including 14 runners (runner group) and 14 sedentary subjects (sedentary group), participated in this study. There were no significant differences in body height, body mass, or blood pressure among the three groups. The PAI of the blind group [310 (SD 330) kcal x week(-1)] was significantly lower than that of the runner group [6300 (SD 1920) kcal week(-1), P < 0.0001] and the sedentary group [810 (SD 780) kcal x week(-1); P < 0.05]. The PAI of the runner group (P < 0.0001) was significantly higher than that of the sedentary group. The APWV and APWV index (standardized APWV for diastolic blood pressure: APWVI) of the runner group [5.22 (SD 0.42) m x s(-1) and 5.54 (SD 0.57) m x s(-1) P < 0.01, respectively] were significantly lower than those of the sedentary group [5.88 (SD 0.51) m x s(-1) and 6.16 (SD 0.48) m x s(-1)]. The APWV and APWVI of the blind group [5.29 (SD 0.49) m x s(-1) and 5.40 (SD 0.60) m x s(-1) P < 0.01, respectively] were significantly lower than those of the sedentary group, but there was no significant difference in the values of the APWV and APWVI between the blind and runner groups. These results would suggest that increased physical activity provides subjects with a distensible aorta, as does the inordinately decreased physical activity in the blind.  相似文献   

7.
The purpose of this study was to determine the effect resistance training has on metabolic economy during typical activities of daily living in a geriatric population. Twenty-nine men and women (age: 66.7 +/- 4.4 years, body mass: 72.3 +/- 11.9 kg) participated in a 26-week heavy-resistance training program. Before and after training, heart rate and expiratory gases were measured for subjects performing 3 tasks that would mimic common everyday activities encountered by this population: (a) walking (WLK) at 3 miles per hour (4.8 km x h(-1)), (b) carrying a box (CAR) to simulate holding a bag of groceries with 1 hand (30% of maximal isometric strength) while walking at 2 miles per hour (3.2 km x h(-1)), and (c) climbing stairs (STR). No time by gender interaction was observed for the WLK, CAR, and STR activities; consequently, the values for men and women were pooled. Both strength and fat-free mass increased significantly (p < or = 0.001) after the training protocol, whereas body mass remained constant. Oxygen cost decreased significantly by 6% (p < or = 0.05) only for CAR, whereas the respiratory exchange ratio decreased significantly (p < or = 0.05) for both WLK (0.84-0.81) and STR (0.87-0.83), and heart rate decreased significantly (p < or = 0.05) only for CAR. After the resistance training program, subjects also reported a significant decrease (p < or = 0.05) in perceived exertion during performance of all functional task test conditions. These results suggest that a heavy-resistance training program might affect exercise economy during daily tasks and improve ease of physical activity, thereby providing a possible mechanism for increasing quality of life in an older and geriatric population.  相似文献   

8.
This study was designed to compare the effectiveness of small-sided handball games in combination with handball training (SSG group) versus high-intensity interval training in combination with handball training (HIIT group) on physical performance of young female handball players during pre-competitive period. Twenty-four young female handball players, who have a 6.17 ± 1.54 years training experience and competition in the national league participated in this study. SSG group (n = 12; age 16.06 ± 0.80 years, body mass 61.27 ± 3.68 kg, body height 1.64 ± 4.7 m, body mass index 22.7 kg/m2) while HIIT group (n = 12; 16.20 ± 1.28 years, body mass 62.46 ± 7.86 kg, body height 1.68 ± 6.8 m, body mass index 22 kg/m2). Both groups applied training programs twice-a-week for 8 weeks. Before and after the training programs physical performances were assessed: Countermovement jump (CMJ), Squat jump (SJ), Sprint on 0–10 m; Sprint on 0–20 m; Sprint on 0–30 m, Throwing medicine ball and total distance covered during the Yo-YoIRT1. After 8 weeks SSG and HIIT groups significantly improved CMJ, SJ, 0–20 m sprint, 0–30 m sprint, throwing medicine ball and Yo-YoIRT1 (p ≤ 0.05). However, significantly greater improvement was achieved in Yo-YoIRT1 (m) in HIIT group (28.40%) than SSG group (17.63%). These results indicate that SSG group and HIIT group equally improve of physical performances (jump, sprint and upper explosive strength) among young female handball players in pre-competitive period.  相似文献   

9.
The purpose of this study was to investigate the effects of added neuromuscular training (NMT), as compared to just regular training (RT), on lower extremity kinematics and single leg stability in adolescent team handball players of both sexes and to investigate whether these effects are more evident in valgus aligned athletes. Eighty adolescent team handball players (NMT: n = 49, RT: n = 31) were tested on knee kinematics in a drop jump and single leg stability in a 1-leg hop test. Based on the initial results in the drop jump test, both groups were subdivided into an above-average valgus aligned (AAVA; NMT: n = 27, RT: n = 22) and a below average valgus aligned (NMT: n = 22, RT: n = 9) group. All groups received 10 weeks of handball training either without (RT) or with in-season NMT. A significant interaction of training and valgus group was found for all absolute and for 2 out of 4 normalized knee distances in the drop jump test (p < 0.024) and for contact time after the first landing (p = 0.029). The AAVA-NMT group showed the largest relative progression (18-37%) for all these parameters. In the 1-leg hop test, a significant effect of NMT compared to RT was found for both legs (p < 0.042). Compared to RT alone, added in-season NMT has the greatest benefits on knee kinematics and single leg stability, in particular in AAVA adolescent team handball players of both sexes. The results of this study suggest that adolescent team handball players of both sexes should be given NMT, 20 minutes twice a week for 10 weeks to improve landing kinematics and single leg stability. "At risk" players with higher initial valgus angles will benefit most from this NMT.  相似文献   

10.
The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.  相似文献   

11.
To determine possible age differences in muscle damage response to strength training, ultrastructural muscle damage was assessed in seven 20- to 30-yr-old and six 65- to 75-yr-old previously sedentary women after heavy-resistance strength training (HRST). Subjects performed unilateral knee-extension exercise 3 days/wk for 9 wk. Bilateral muscle biopsies from the vastus lateralis were assessed for muscle damage via electron microscopy. HRST resulted in a 38 and 25% increase in strength in the young and older women, respectively (P < 0.05), but there were no between-group differences. In the young women, 2-4% of muscle fibers exhibited damage before and after training in both the trained and untrained legs (P = not significant). In contrast, muscle damage increased significantly after HRST, from 5 to 17% of fibers damaged (P < 0.01), in the older women in the trained leg compared with only 2 and 5% of fibers damaged in the untrained leg before and after training, respectively. The present results indicate that older women exhibit higher levels of muscle damage after chronic HRST than do young women.  相似文献   

12.
This study examined the hypothesis that exercise-induced changes in circulating testosterone would be centrally mediated via hypothalamic-pituitary release of luteinizing hormone (LH). We tested this hypothesis by examining overnight LH, total and free testosterone (TT and FT), and cortisol (C) concentrations in 10 young healthy men (21 +/- 1 yr) during two experimental sessions: a control and an acute heavy-resistance exercise bout (50 total sets consisting of squats, bench press, leg press, and latissimus dorsi pull-down). Exercise was performed from 1500 to 1700, and blood sampling began at 1700 and continued until 0600 the next morning. Blood was sampled every 10 min for LH and every hour for TT, FT, and C. Hormonal concentrations were determined via RIA, and the secretion characteristics of LH were analyzed with deconvolution analysis. When overnight postexercise concentrations were compared with control concentrations, no statistically significant (P < or = 0.05) differences were observed for LH half-life, LH pulse frequency, interpulse interval, pulse amplitude, or pulse mass. Significant differences were observed for LH production rate (13.6 +/- 4 and 17.9 +/- 5 IU. l distribution volume(-1) x day(-1) for exercise and control, respectively, a 24% reduction). For the ANOVA marginal main effect means due to condition, C was significantly elevated (5.9 +/- 0.7 vs. 4.0 +/- 0.4 microg/dl), while TT (464 +/- 23 vs. 529 +/- 32 ng/dl) and FT (15.6 +/- 0.7 vs. 18.3 +/- 0.9 pg/ml) were significantly decreased for the exercise condition. These data demonstrate that the decline in overnight testosterone concentrations after acute heavy-resistance exercise is accompanied by a blunted LH production rate and elevated C concentrations.  相似文献   

13.
The aims of this study were to test the potential of in-season heavy upper and lower limb strength training to enhance peak power output (Wpeak), vertical jump, and handball related field performance in elite male handball players who were apparently already well trained, and to assess any adverse effects on sprint velocity. Twenty-four competitors were divided randomly between a heavy resistance (HR) group (age 20 ± 0.7 years) and a control group (C; age 20 ± 0.1 years). Resistance training sessions were performed twice a week for 8 weeks. Performance was assessed before and after conditioning. Peak power (W(peak)) was determined by cycle ergometer; vertical squat jump (SJ) and countermovement jump (CMJ); video analyses assessed velocities during the first step (V(1S)), the first 5 m (V(5m)), and between 25 and 30 m (V(peak)) of a 30-m sprint. Upper limb bench press and pull-over exercises and lower limb back half squats were performed to 1-repetition maximum (1RM). Upper limb, leg, and thigh muscle volumes and mean thigh cross-sectional area (CSA) were assessed by anthropometry. W(peak) (W) for both limbs (p < 0.001), vertical jump height (p < 0.01 for both SJ and CMJ), 1RM (p < 0.001 for both upper and lower limbs) and sprint velocities (p < 0.01 for V(1S) and V(5m); p < 0.001 for V(peak)) improved in the HR group. Upper body, leg, and thigh muscle volumes and thigh CSA also increased significantly after strength training. We conclude that in-season biweekly heavy back half-squat, pull-over, and bench-press exercises can be commended to elite male handball players as improving many measures of handball-related performance without adverse effects upon speed of movement.  相似文献   

14.
The aim of this study was to determine the effects of 8 weeks of resistance training (RT) on the myoglobin concentration ([Mb]) in human skeletal muscle, and to compare the change in the [Mb] in two different RT protocols. The two types of protocol used were interval RT (IRT) of moderate to low intensity with a high number of repetitions and a short recovery time, and repetition RT (RRT) of high intensity with a low number of repetitions and a long recovery time. A group of 11 healthy male adults voluntarily participated in this study and were divided into IRT (n = 6) and RRT (n = 5) groups. Both training protocols were carried out twice a week for 8 weeks. At the completion of the training period, the one-repetition maximal force values and isometric force were increased significantly in all the subjects, by about 38.8% and 26.0%, respectively (P < 0.01). The muscle fibre composition was unchanged by the 8 weeks of training. The muscle fibre cross-sectional areas were increased significantly by both types of training in all fibre types (I, IIa and IIb, mean + 16.1 %, P < 0.05). The [Mb] showed no significant changes at the completion of the training [IRT from 4.63 (SD 0.63) to 4.48 (SD 0.72), RRT from 4.47 (SD 0.75) to 4.24 (SD 0.80) mg x g(-1) wet tissue] despite a significant decrease in citrate synthase activity [IRT from 5.27 (SD 1.45) to 4.49 (SD 1.48), RRT from 5.33 (SD 2.09) to 4.85 (SD 1.87) micromol x min(-1) x g(-1) wet tissue; P < 0.05] observed after both protocols. These results suggested that myoglobin and mitochondria enzymes were regulated by different mechanisms in response to either type of RT. Moreover, the maintained [Mb] in hypertrophied muscle should preserve oxygen transport from capillaries to mitochondria even when diffusion distance is increased.  相似文献   

15.
Effects of 16-wk strength training on maximal strength and power performance of the arm and leg muscles and serum concentrations [testosterone (T), free testosterone (FT), and cortisol] were examined in 11 middle-aged (M46; 46 +/- 2 yr) and 11 older men (M64; 64 +/- 2 yr). During the 16-wk training, the relative increases in maximal strength and muscle power output of the arm and leg muscles were significant in both groups (P < 0.05-0.001), with no significant differences between the two groups. The absolute increases were higher (P < 0.01-0.05) in M46 than in M64 mainly during the last 8 wk of training. No significant changes were observed for serum T and FT concentrations. Analysis of covariance showed that, during the 16-wk training period, serum FT concentrations tended to decrease in M64 and increase in M46 (P < 0.05). However, significant correlations between the mean level of individual serum T and FT concentrations and the individual changes in maximal strength were observed in a combined group during the 16-wk training (r = 0.49 and 0.5, respectively; P < 0.05). These data indicate that a prolonged total strength-training program would lead to large gains in maximal strength and power load characteristics of the upper and lower extremity muscles, but the pattern of maximal and power development seemed to differ between the upper and lower extremities in both groups, possibly limited in magnitude because of neuromuscular and/or age-related endocrine impairments.  相似文献   

16.
Circuit training effectively reduces the time devoted to strength training while allowing an adequate training volume to be achieved. Nonetheless, circuit training has traditionally been performed using relatively low loads for a relatively high number of repetitions, which is not conducive to maximal muscle size and strength gain. This investigation compared physical performance parameters and cardiovascular load during heavy-resistance circuit (HRC) training to the responses during a traditional, passive rest strength training set (TS). Ten healthy subjects (age, 26 +/- 1.6 years; weight, 80.2 +/- 8.78 kg) with strength training experience volunteered for the study. Testing was performed once weekly for 3 weeks. On day 1, subjects were familiarized with the test and training exercises. On the subsequent 2 test days, subjects performed 1 of 2 strength training programs: HRC (5 sets x (bench press + leg extensions + ankle extensions); 35-second interset rest; 6 repetition maximum [6RM] loads) or TS (5 sets x bench press; 3-minute interset rest, 6RM loads). The data confirm that the maximum and average bar velocity and power and the number of repetitions performed of the bench press in the 2 conditions was the same; however, the average heart rate was significantly greater in the HRC compared to the TS condition (HRC = 129 +/- 15.6 beats x min(-1), approximately 71% maximum heart rate (HRmax), TS = 113 +/- 13.1 beats x min(-1), approximately 62% HRmax; P < 0.05). Thus, HRC sets are quantitatively similar to traditional strength training sets, but the cardiovascular load is substantially greater. HRC may be an effective training strategy for the promotion of both strength and cardiovascular adaptations.  相似文献   

17.
Reductions in basal leg blood flow have been implicated in the pathogenesis of metabolic syndrome and functional impairment in humans. We tested the hypothesis that reductions in basal whole leg blood flow with age are either absent or attenuated in those who perform regular strength training. A total of 104 normotensive men aged 20-34 yr (young) and 35-65 yr (middle aged), who were either sedentary or resistance trained, were studied. Mean and diastolic blood pressures were higher (P < 0.05-0.001) in the middle-aged compared with the young men, but there were no significant differences between the sedentary and resistance-trained groups. In the sedentary group, basal whole leg blood flow (duplex Doppler ultrasound) and vascular conductance were lower ( approximately 30 and approximately 38%, respectively; P < 0.01) in the middle-aged compared with the young men. There were no such age-related differences in the resistance-trained group. In the young men, basal whole leg blood flow and vascular conductance were not different between the two activity groups, but, in the middle-aged men, they were higher ( approximately 35 and approximately 36%, respectively; P < 0.01) in the resistance-trained men than in the sedentary men. When blood flow and vascular conductance were expressed relative to the leg muscle mass, the results were essentially the same. We concluded that the age-related reduction in basal whole leg blood flow is absent in resistance-trained men. These results suggest that resistance training may favorably influence leg perfusion in aging humans, independent of its impact on leg muscle mass.  相似文献   

18.
Increasing evidence suggests that the myogenic regulatory factors (MRFs) and IGF-I have important roles in the hypertrophy response observed after mechanical loading. We, therefore, hypothesized that a bout of heavy-resistance training would affect the MRF and IGF-I mRNA levels in human skeletal muscle. Six male subjects completed four sets of 6-12 repetitions on a leg press and knee extensor machine separated by 3 min. Myogenin, MRF4, MyoD, IGF-IEabc (isoforms a, b, and c) and IGF-IEbc (isoform b and c) mRNA levels were determined in the vastus lateralis muscle by RT-PCR before exercise, immediately after, and 1, 2, 6, 24, and 48 h postexercise. Myogenin, MyoD, and MRF4 mRNA levels were elevated (P < 0.005) by 100-400% 0-24 h postexercise. IGF-IEabc mRNA content decreased (P < 0.005) by approximately 44% after 1 and 6 h of recovery. The IGF-IEbc mRNA level was unaffected. The present study shows that myogenin, MyoD, and MRF4 mRNA levels are transiently elevated in human skeletal muscle after a single bout of heavy-resistance training, supporting the idea that the MRFs may be involved in regulating hypertrophy and/or fiber-type transitions. The results also suggest that IGF-IEa expression may be downregulated at the mRNA level during the initial part of recovery from resistance exercise.  相似文献   

19.
Ten healthy young men (21.0 +/- 1.5 yr, 1.79 +/- 0.1 m, 82.7 +/- 14.7 kg, means +/- SD) participated in 8 wk of intense unilateral resistance training (knee extension exercise) such that one leg was trained (T) and the other acted as an untrained (UT) control. After the 8 wk of unilateral training, infusions of L-[ring-d(5)]phenylalanine, L-[ring-(13)C(6)]phenylalanine, and d(3)-alpha-ketoisocaproic acid were used to measure mixed muscle protein synthesis in the T and UT legs by the direct incorporation method [fractional synthetic rate (FSR)]. Protein synthesis was determined at rest as well as 4 h and 28 h after an acute bout of resistance exercise performed at the same intensity relative to the gain in single repetition maximum before and after training. Training increased mean muscle fiber cross-sectional area only in the T leg (type I: 16 +/- 10%; type II: 20 +/- 19%, P < 0.05). Acute resistance exercise increased muscle protein FSR in both legs at 4 h (T: 162 +/- 76%; UT: 108 +/- 62%, P < 0.01 vs. rest) with the increase in the T leg being significantly higher than in the UT leg at this time (P < 0.01). At 28 h postexercise, FSR in the T leg had returned to resting levels; however, the rate of protein synthesis in the UT leg remained elevated above resting (70 +/- 49%, P < 0.01). We conclude that resistance training attenuates the protein synthetic response to acute resistance exercise, despite higher initial increases in FSR, by shortening the duration for which protein synthesis is elevated.  相似文献   

20.
This study investigated the acute effects of upper-body maximal dynamic contractions on maximal throwing speed with 0.55- and 4-kg medicine balls. It was hypothesized that heavy preloading would transiently improve throwing performance only when overcoming the heavier of the two loads. Twenty-three male volunteers were randomly allocated into experimental (n = 11) and control (n = 12) groups. Both groups performed initial and final seated medicine ball throws from the chest, and the maximal medicine ball speed was measured by means of a radar gun. Between the two measurements, the control group rested passively for 15 minutes, and the experimental group performed three sets of three-repetition maximum bench presses. For the 0.55-kg load, a 2 x 2 repeated-measures analysis of variance revealed no significant effect of time x group interaction (p = 0.22), as well as no significant time (p = 0.22) or group (p = 0.72) effects. In contrast, for the 4-kg load, a significant time x group interaction (p = 0.004) and a significant time (p = 0.035) but not group (p = 0.77) effect were observed. Analysis of simple main effects revealed that the experimental group significantly (8.3%; p < 0.01) improved maximal throwing speed with the 4-kg load. These results support our research hypothesis and suggest that the acute effects of heavy preloading on upper-body ballistic performance might be load specific. In a practical sense, our findings suggest that the use of upper-body heavy resistance exercise before ballistic throwing movements against moderate external loads might be an efficient training strategy for improving an athlete's upper-body explosive performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号