首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Three species of free-living Antarctic fellfield nematodes, Eudorylaimus coniceps, E. spaulli and E. pseudocarteri exhibited differing degrees of both strategies of cold-hardiness; freeze-tolerance and freeze-avoidance. Bimodal distributions of supercooling points were obtained from monthly field samples of both E. coniceps and E. spaulli. Individuals found in the low group of this distribution (supercooling to <-15 °C) were capable of avoiding freezing by extensive supercoolint (to a mean temperature of ca-22 °C), sufficient to with-stand the environmental extremes of the maritime Antarctic. The high groups of both these species, and almost all E. pseudocarteri, were likely to have frozen at some stage during winter. Survival of freezing increased with the temperature at which nucleation occurred, and has been described by a Gompertz model. Estimates of the supercooling points at which survival fell to 50% were-10.4,-7.1 and-6.1 °C for E. coniceps, E. pseudocarteri and E. spaulli, respectively.  相似文献   

2.
Summary The Antarctic oribatid mite Alaskozetes antarcticus was collected from several field habitats near Great Wall Station (62°13S, 58°58W) on King George Island during January and February 1990. The tritonymphs and adults were examined for their supercooling ability and survival at subzero temperatures in relation to inoculative freezing. The active tritonymphs and adults showed a wide range of supercooling points probably due to their polyphagous feeding activity and humid habitat conditions, with means ranging from -3.8° to -22.4°C. Detrivores were inferior to algivores in their supercooling ability. The former seemed to be transiently exposed to the hazard of freezing during the cool Antarctic summer. The resting (premoulting) tritonymphs exhibited the lowest mean supercooling point of -28.3°C. Inoculative freezing reduced the survival of A. antarcticus. Its effect became conspicuous at temperatures below -20°C and was serious in the deeply supercooled individuals, such as resting tritonymphs and algivorous adults. During the active season, spontaneous freezing probably started from the gut contents seemed to be more fatal than inoculative freezing for this freeze intolerant species.  相似文献   

3.
Summary The ability of adults and larvae of two species of perimylopid beetles (Hydromedion sparsutum, Perimylops antarcticus) to survive sub-zero temperatures was studied at Husvik, South Georgia in summer during October–December 1990. Experiments determined their survival at constant sub-zero temperatures, their lower lethal temperatures and individual supercooling points. The effects of cooling rates (0.015°, 0.5° and 2.0°C min–1) and starvation on survival were also assessed. Mean supercooling points of field-collected individuals of both species were in the range -3.0° to -5.4°C with Perimylops having a deeper capacity (ca. 1.5°C) for supercooling relative to Hydromedion. The former species also survived freezing temperatures significantly better than the latter and its mean lower lethal temperature was 2.5°C lower. At a constant temperature of -8.5°C, the median survival times for Perimylops adults and larvae were 19 and 26 h respectively, whilst both stages of Hydromedion died within 3 h. The three cooling rates resulted in significantly different median survival temperatures for adult Hydromedion with 0.5°C min–1 producing maximum survival. Prior starvation did not have a significant influence on the survival of either species at sub-zero temperatures although both adults survived less well. The results support field observations on the habitats and distribution of these insects, and suggest differing degrees of freezing tolerance.  相似文献   

4.
Summary The krill Euphausia superba, unlike the amphipod, Eusirus antarcticus, tolerates being frozen into solid sea-ice at temperatures down to about-4°C. Cooled in air, the amphipod and the krill freeze and will die at temperatures of-11° and-9°C respectively, representing the supercooling points of the animals. The krill is an osmoconformer in the salinity range of 25 to 45 ppt, while the amphipod conforms in the salinity range of 26 to 40 ppt. The animals thereby lower the melting point of their body fluids in the vicinity of the freezing sea ice, preventing internal ice formation at low temperatures. The mean oxygen consumption rates, at raised and lowered salinities, were not significantly different from rates obtained in normal (35 ppt.) seawater, indicating that salinity has little effect on the metabolism of either species.  相似文献   

5.
Ice nucleation studies of two beetles from sub-antarctic South Georgia   总被引:1,自引:0,他引:1  
Summary Supercooling points of adults and larvae of the coleopterans Hydromedion sparsutum and Perimylops antarcticus at South Georgia ranged from -3.0 to -5.4°C with Perimylops freezing at c.1.6°C lower than Hydromedion. Intact excised guts from adults of both species froze c. 1°C lower than the adult insects. Ice nucleating activity of homogenized faeces from larvae and adults of both species and excised guts were compared with three potential food plants using an ice nucleation spectrometer. Mean supercooling points of the insect materials at four concentrations in distilled water (range from 0.01 to 10 g 1–1) were significantly different (P<0.01) within species, and within life stages between species. Differences in the supercooling points of suspensions of Polytrichum alpinum (moss) and Usnea fasciata (lichen) were not significant. In general, differences between supercooling points were greater at the higher concentrations. Histograms of the supercooling points showed unimodal distributions particularly at high concentrations and greater dispersion with increased dilution. Spectra showing the concentration of active ice nucleators over the temperature range 0 to -20°C were developed. These showed that nucleation occurred as high as -2°C in faecal material and all insect samples nucleated above -3°C, whereas the plant materials nucleated between -4 and -5°C. The calculated number of ice nucleators for each material in suspension revealed low values (5.3 to 5.8 × 103) for the plants, but a greater abundance (1.3 × 105 to 1.3 × 106) in the insect samples. It is concluded that c.1000 active nucleators g–1 are required for ice nucleation to occur in these suspensions. Ice nucleator activity of a suspension of Hydromedion faeces was much reduced by heating to 75°C, suggesting a proteinaceous structure. These results are discussed in relation to ice nucleation in other insects, and it is concluded that bacteria may be responsible for the high nucleation temperatures, and hence poor supercooling, in these South Georgia insects. An empirical model is developed for ice nucleation spectra based on these data.  相似文献   

6.
Summary Coomansus gerlachei shows a strong seasonal variation in its supercooling ability, with most individuals freezing between -5° and -7°C, in a discrete high group, or between -15° and -26°C in a more diffuse low group. Increased cold-hardiness in winter is achieved by a strategy of freeze avoidance with an increase in the proportion of the population showing extensive supercooling ability. Smaller life-stages also exhibit lower supercooling points. Ice-nucleation at high sub-zero temperatures increases the probability of surviving freezing, a capacity which is enhanced in larger life-stages; adults and J4 stage juveniles show 50% survival at a supercooling point of -8.65° C. Laboratory incubations of field-fresh worms suggest that recent feeding is responsible for the movement between low and high groups. The cold-hardiness data for C. gerlachei provide interesting comparisons to the available data for microarthropods and create a precedent for seasonal changes between strategies of freezing tolerance and freezing intolerance in a field invertebrate population.  相似文献   

7.
Supercooling points were estimated for seven populations of >Aphelinus albipodus, five populations of >Aphelinus asychis, and four populations of >Diaeretiella rapae to assess whether their supercooling points were sufficiently low to provide the potential for overwintering survival in colder temperate climatic areas. Test individuals from all 16 of the parasitoid populations were collected originally from mummies of the Russian wheat aphid, >Diuraphis noxia. Mummies containing parasitoid pupae were maintained for 1 wk under three different temperature conditions (treatments): at room temperature (24.8 ± 0.2 °C), 1 wk at 0 °C, and 1 wk –5 °C, and the supercooling points across treatments, and within and among species were compared. Statistical differences in supercooling points were found among populations of >A. albipodus for each treatment, and for >A. asychis when maintained for 1 wk at room temperature. No differences in supercooling points were found among populations of >D. rapae mummies maintained under the three temperature treatments. The lowest supercooling points obtained for the three parasitoid species maintained at room temperature were the >A. albipodus population from Montana (–31.68 °C), the >A. asychis population from Greece (–32.04 °C), and the >D. rapaepopulation from the Caucasus (–33.12 °C). Preconditioning the parasitoid mummies to cold had no effect on the supercooling points for >A. albipodus, and in some cases unexpectedly increased the supercooling points for >A. asychisand >D. rapae. In comparing the overall mean supercooling points of the three parasitoid species, no differences were found within species (among temperature treatments), nor among species (within temperature treatments). It was concluded that observed differences in supercooling points of only a few degrees Centigrade among parasitoid populations and species would not be expected to cause differences in their overwintering success, especially given the expected variability in temperatures within and among overwintering sites.  相似文献   

8.
The terrestrial isopod, Porcellio scaber, was susceptible to subzero temperature: both freezing and chilling were injurious. The level of cold hardiness against chilling and freezing showed different patterns in their seasonal variation. The lower lethal temperature causing 50% mortality, an indicator of the tolerance to chilling, ranged from-1.37°C in August to-4.58°C in December. The whole body supercooling point, the absolute limit of freeze avoidance, was kept at about-7°C throughout the year. The winter decrease in lower lethal temperature was concomitant with an accumulation of low molecular weight carbohydrates which are possible protective reagents against chilling injury, whereas the less seasonally variable supercooling point seemed to be associated with the year-round presence of gut content. Food derivatives may act as efficient ice nucleators. The different trend in seasonal changes between lower lethal temperature and supercooling point may be related to the microclimate of the hibernacula in subnivean environments, where the winter temperature became lower than the lower lethal temperature in the summer active phase, but remained higher than the summer supercooling point.Abbreviations LLT50 lower lethal temperature inducing 50% mortality - SCP supercooling point - T a ambient air temperature - T s soil surface temperature  相似文献   

9.
Summary Overwintering larvae and adults of the stag beetle,Ceruchus piceus, are freeze sensitive (i.e. cannot survive internal freezing). The most commonly described cold adaptation of freeze susceptible insects involves the production of antifreezes to promote supercooling, butCeruchus piceus larvae produced only low levels of antifreezes in the winter. However, by removing ice nucleators from the gut and hemolymph in the winter the larvae were able to depress their supercooling points from approximately –7°C in the summer to near –25°C in mid-winter. The ice nucleators present in the non-winter hemolymph were identified as lipoproteins. One of these lipoproteins with ice nucleator activity was purified using flotation ultracentrifugation and anion exchange (DEAE-Sephadex) chromatography.Removal of ice nucleators to promote supercooling in winter may be energetically preferable to costly production and maintenance of high, of-ten molar, concentrations of antifreeze. Obviously the ice nucleator must normally perform a function which the insect can spare over the winter. Hemolymph lipoproteins, which generally function in lipid transport, may fit this criterion during the winter period of reduced metabolic activity.Abbreviations LP I very low density lipoprotein - LP II low density lipoprotein - PAGE polyacrylamide gel electrophoresis - SCP supercooling point  相似文献   

10.
The ecology and physiology of a free-living mite species Antarcticola meyeri, Cryptostigmata, rarely discovered in the Continental Antarctic Zone, were studied near the Japanese Antarctic Base, Syowa Station. The distribution of this mite species correlated noticeably with the distribution of its food, the imperfect lichen species, which grow in moss carpets. Within a limited habitat, this mite species preferred dry carpets to wet carpets. Low humidity appeared disadvantageous to the species at high temperatures (ca. 30°C), but at low temperatures (ca. -25°C), low humidity appeared advantageous. This may explain why this species preferred dry carpets. The mean supercooling point of starved individuals was -30.6°C (nymphs) to-33.9°C (eggs). When fed with lichens, however, it was significantly raised, probably because the gut contents functioned as ice nucleators or contained ice-nucleating agents. Acclimation to low temperatures significantly lowered the supercooling point of larvae but not of other growth stages.  相似文献   

11.
Supercooling points, lower lethal temperatures, and the effect of short-term exposures to low temperatures were examined during both winter and summer in the adults of six weevil species from three different habitats on Marion Island. Upper lethal limits and the effects of short-term exposure to high temperatures were also examined in summer-acclimatized adult individuals of these species. Bothrometopus elongatus, B. parvulus, B. randi, Ectemnorhinus marioni, and E. similis were freeze tolerant, but had high lower lethal temperatures (−7 to −10°C). Seasonal variation in these parameters was not pronounced. Physical conditions of the habitat appeared to have little effect on cold hardiness parameters because the Ectemnorhinus species occur in very wet habitats, whereas the Bothrometopus species inhabit drier areas. The adults of these weevil species are similar to other high southern latitude insects in that they are freeze tolerant, but with high lower lethal temperatures. In contrast, Palirhoeus eatoni, a supra-littoral species, avoided freezing and had a mean supercooling point of −15.5 ± 0.94°C (SE) in winter and −11.8 ± 0.98°C in summer. Survival of a constant low temperature of −8°C also increased in this species from 6 h in summer to 27 h in winter. It is suggested that this strategy may be a consequence of the osmoregulatory requirements imposed on this species by its supra-littoral habitat. Upper lethal temperatures (31–34°C) corresponded closely with maximum microclimate temperatures in all of the species. This indicates that the pronounced warming, accompanied by the increased insolation that has been recorded at Marion Island, may reduce survival of these species. These effects may be compounded as a consequence of predation by feral house mice on the weevils. Received: 4 February 1997 / Accepted: 3 May 1997  相似文献   

12.
Summary The two mesopsammal polychaetes, Hesionides arenaria and Trilobodrilus axi, show a relatively high resistance to cold temperatures in experiments. Great differences, however, between supercooled and frozen individuals exist. In chilling experiments T. axi is much less sensitive (no damage after 5 h at -12° C) than H. arenaria (50% mortality after 1 h at -7° C). The freezing resistance is essentially much less, but identical for the two species (100% mortality at -10° C after 1 h exposure). The differences in the supercooling resistance of the two species are in agreement with their geographic distribution and their seasonal migration behavior in the sandy beach locality.  相似文献   

13.
The effects of stratification temperatures and burial in soil on dormancy levels of Carex pendula L. and C. remota L., two spring-germinating perennials occurring in moist forests, were investigated. Seeds buried for 34 months outdoors, and seeds stratified in the laboratory at temperatures between 3 and 18 °C for periods between 2 and 28 weeks, were tested over a range of temperatures. Seeds of the two species responded similarly to stratification treatments, except for an absolute light requirement in C. pendula. Primary dormancy was alleviated at all stratification temperatures, but low temperatures were more effective than higher ones . (≥ 12 °C). Dormancy induction in non-dormant seeds kept at 5 °C occurred when seeds were subsequently exposed to 18 °C. Dormancy was not induced by a transfer to lower temperatures. Buried seeds of both species exhibited seasonal dormancy cycles with high germination from autumn to spring and low germination during summer. Temperatures at which the processes of dormancy relief and of dormancy induction occurred, overlapped to a high degree. Whether, and when, dormancy changes occurred depended on test conditions. The lower temperature limit for germination (> 10%) was 9 °C in C. remota and 15 °C in C. pendula. Germination ceased abruptly above 36 °C. Germination requirements and dormancy patterns suggest regeneration from seed in late spring and summer at disturbed, open sites (forest gaps) and the capability to form long, persistent seed banks in both species.  相似文献   

14.
The cold-hardening capacity of field-collected larvae from southeast Missouri and laboratory-reared larvae of the southwestern corn borer, Diatraea grandiosella Dyar, was examined. Supercooling points of non-diapause and diapause larvae collected from maize plants grown in Missouri (36°30 N lat.) were ca.-7.0°C. The hemolymph melting points of diapause field larvae (-0.8°C) were significantly lower than those of non-diapause larvae collected in July (-0.5°C). The supercooling points of hemolymph from non-diapause and diapause field larvae ranged randomly from-10° to-18°C. Supercooling points of non-diapause laboratory larvae increased from-13° to-10°C prior to pupation, whereas those of diapause larvae increased similarly before the onset of diapause, but then decreased during diapause to ca.-17°C. No change in supercooling points or capacity to survive in the presence of ice was observed in diapause laboratory larvae acclimated at 4°C for 63 days. Laboratory and field larvae began to freeze at ca.-1.5°C in the presence of ice, but survived to several degrees below their melting points. The high supercooling points of field larvae appeared to be due to the presence of an environmental ice-nucleator. Although data for laboratory larvae indicate sufficiently low supercooling points to permit winter survival in southeastern Missouri, considerable larval mortality occurs in the field due to inoculative freezing and the presence of an ice-nucleator.  相似文献   

15.
Summary Two flesh fly species from the tropical lowlands (Peckia abnormis and Sarcodexia sternodontis) were more susceptible to both cold-shock and heatshock injury than temperate flies (Sarcophaga crassipalpis and S. bullata) and a fly from a tropical high altitude (Blaesoxipha plinthopyga). A brief (2-h) exposure to 0°C elicits a protective response against subsequent cold injury at–10°C in the temperate flies and in B. plinthopyga but no such response was found in the flies from the tropical lowlands. However, both tropical and temperate flies could be protected against heat injury (45°C) by first exposing them to a mild heat shock (2 h at 40°C). The supercooling point is not a good indicator of cold tolerance: supercooling points of pupae were similar in all species, ranging from–18.9 to–23.0°C, and no differences were found between the tropical and temperate species. Among the temperate species, glycerol, the major cryoprotectant, can be elevated by short-term exposure to 0°C, but glycerol could not be detected in the tropical flies. Low-temperature (0°C) exposure also increased hemolymph osmolality of the temperate species, but no such increase was observed in the tropical lowland species. Adaptations to temperature stress thus differ in tropical and temperate flesh flies: while flies from both geographic areas share a mechanism for rapidly increasing heat tolerance, only the temperate flies appear capable of responding rapidly to cold stress. The presence of a heat shock response in species that lack the ability to rapidly respond to cold stress indicates that the biochemical and physiological bases for these two responses are likely to differ.  相似文献   

16.
Freeze-avoiding fire-colored beetle larvae, Dendroides canadensis, were monitored seasonally to explore the role of endogenous hemolymph ice nucleators and antifreeze proteins on the maintenance of supercooling. In preparation for overwintering, D. canadensis depressed hemolymph ice nucleator activity and increased thermal hysteresis activity [mean value circa 0. 5 °C (summer) versus circa 5 °C (midwinter)] resulting in decreased larval and hemolymph supercooling points [−7 °C (summer) versus −20 °C (midwinter)]. Results of gel filtration chromatography, flotation ultracentifugation and quantitative investigation of ice nucleator activity using hemolymph from summer and winter collected larvae strongly suggest that highly active protein and lipoprotein ice nucleators are removed in preparation for overwintering. Additions of either purified antifreeze proteins or midwinter hemolymph with high antifreeze protein activity to a mixture of protein or lipoprotein ice nucleators isolated from D. canadensis hemolymph inhibited the activity of these nucleators. This suggests that in addition to seasonal removal, inhibition of hemolymph ice nucleators by antifreeze proteins contributes to seasonal increases in hemolymph supercooling capacity. Accepted: 8 August 1996  相似文献   

17.
Park S. Nobel 《Oecologia》1984,62(3):310-317
Summary Extreme temperatures near the soil surface, which can reach 70°C at the main study site in the northwestern Sonoran Desert, markedly affect seedling survival. Computer simulations indicated that for the rather spherical barrel cactus Ferocactus acanthodes (Lem.) Britt. & Rose the maximum surface temperature decreased 8°C and the minimum temperature increased 3°C as the seedling height was increased from 1 mm up to 50 mm. Simulated changes in shortwave and longwave irradiation alone showed that shading could decrease the maximum temperature by about 5°C for the common desert agave, Agave deserti Engelm., and raise the minimum 1°C. Actual field measurements on seedlings of both species, where shading would affect local air temperatures and wind speeds in addition to irradiation, indicated that shading decreased the average maximum surface temperature by 11°C in the summer and raised the minimum temperature by 3°C in winter.Seedlings grown at day/iight air temperatures of 30°C/20°C tolerated low temperatures of about -7°C and high temperatures of about 56°C, as measured by the temperature where stain uptake by chlorenchyma cells was reduced 50%. Seedling tolerance to high temperatures increased slightly with age, and F. acanthodes was more tolerant than A. deserti. Even taking the acclimation of high temperature tolerance into account (2.7°C increase per 10°C increase in temperature), seedlings of A. deserti would not be expected to withstand the high temperatures at exposed sites, consistent with previous observations that these seedlings occur only in protected microhabitats. Based primarily on greater high temperature acclimation (4.3°C per 10°C), seedlings of F. acanthodes have a greater high temperature tolerance and can just barely survive in exposed sites. Wide ranges in photoperiod had little effect on the thermal sensitivities of either species. When drought increased the chlorenchyma osmotic pressure from about 0.5 MPa to 1.3 MPa, seedlings of both species became about 2°C less tolerant of high temperatures, which would be nonadaptive in a desert environment, and 2°C more tolerant of low temperatures, which also occurs for other species.In conclusion, seedlings of A. deserti and F. acanthodes could tolerate tissue temperatures over 60°C when acclimated to high temperatures and below -8°C when acclimated to low temperatures. However, the extreme environment adjacent to desert soil requires sheltered microhabitats to protect the plants from high temperature damage and also to protect them from low temperature damage at their upper elevational limits.  相似文献   

18.
Summary The Critical temperatures (defined as the upper and lower limits at which the animal can still right itself) were determined for 29 lizard species (13 genera) and four snake species (four genera) of Southeast Australia. In addition to these Critical temperatures, acclimation of the Critical temperatures and also some lethal temperatures were recorded for several of these species. The mean summer Critical Minimum values ranged between 2.2 and 9.8°C. Thigmotherms (Gekkonidae, Lygosominae, Elapidae) and posturing heliotherms (Agamidae, Scincinae, Varanidae) generally had high Critical Minimum values and the shuttling heliotherms (Lygosominae, Elapidae) had the lowest values. The rate of acclimation of the Critical Minimum of ten lizard species was similar and complete acclimation took place within ten days. Following acclimation the final or ultimate Critical Minimum of some species fell below the body freezing point of-0.52°C and locomotion could occur while the lizard was supercooled. Mean summer Critical Maximum values ranged between 37.0 and 44.8°C. Determination of the Lethal Minimum temperatures by continuously cooling the specimens was complicated by the fact that supercooling occurred followed by nucleation or sudden freezing of the body tissues. The Lethal Minimum was best determined by holding specimens at different constant temperature levels then calculating the body temperature at which the species could survive for an indefinite time period. It is concluded, from the data presented in this paper, that if environmental temperatures were to limit the distribution of reptiles then the Critical Minimum level would have more ecological significance than the Critical Maximum.  相似文献   

19.
The temperature responses for growth and survival have been experimentally tested for 6 species of the green algal genusCladophora (Chlorophyceae; Cladophorales) (all isolated from Roscoff, Brittany, France, one also from Connecticut, USA), selected from 4 distribution groups, in order to determine which phase in the annual temperature regime might prevent the spread of a species beyond its present latitudinal range on the N. Atlantic coasts. For five species geographic limits could be specifically defined as due to a growth limit in the growing season or to a lethal limit in the adverse season. These species were: (1)C. coelothrix (Amphiatlantic tropical to warm temperate), with a northern boundary on the European coasts formed by a summer growth limit near the 12°C August isotherm. On the American coasts sea temperatures should allow its occurrence further north. (2)C. vagabunda (Amphiatlantic tropical to temperate), with a northern boundary formed by a summer growth limit near the 15°C August isotherm on both sides of the Atlantic. (3)C. dalmatica, as forC. vagabunda. (4)C. hutchinsiae (Mediterranean-Atlantic warm temperate), with a northern boundary formed by a summer growth limit near the 12°C August isotherm, and possibly also a winter lethal limit near the 6°C February isotherm; and a southern boundary formed by a southern lethal limit near the 26°C August isotherm. It is absent from the warm temperate American coast because its lethal limits, 5° and 30°C, are regularly reached there. (5) Preliminary data forC. rupestris (Amphiatlantic temperate), suggest the southeastern boundary on the African coast to be a summer lethal limit near the 26°C August isotherm; the southwestern boundary on the American coast lies on the 20°C August isotherm. For one species,C. albida, the experimental growth and survival range was wider than expected from its geographic distribution, and reasons to account for this are suggested.Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

20.
Summary The effect of temperature on the ability of neuromuscular junctions and muscle fibers to contract, release neurotransmitter, and maintein postsynaptic membrane properties, was measured in vivo and in vitro in claw closer muscles in stone crabsMenippe mercenaria (Say) and blues crabsCallinectes sapidus (Rathbun).In vivo muscle stress (defined as force generated per unit of muscle cross-sectional area) was measured in crabs of both species collected from northern populations (annual temperature range 2–30°C) and southern populations (annual temperature range 15–30°C). Muscle stress was compared between (1) crabs of both species maintained in the laboratory at 30°C (laboratory warmed); (2) crabs given a brief acclimation period (4 weeks for blue crabs; 7 weeks for stone crabs) at 8°C in the laboratory (laboratory colled), and (3) stone crabs that had been naturally acclimated from summer (30°C) to winter (8°C) temperatures over a 6 month period in the field (naturally cooled). No differences were found in the abilities of the northern and southern populations of either species to generate muscle stress when tested at summer temperatures (30°C) common to both populations. Northern and southern blue crabs produced similar levels of muscle stress whether laboratory warmed (30°C) or laboratory cooled (8°C). Conversely, northern and southern stone crabs showed significantly reduced muscle stress in laboratory cooled crabs compared with laboratory warmed crabs. Stone crabs from both populations generated the same amount of muscle stress after having been naturally cooled to 8°C as they had generated the previous summer (30°C).In vitro neuromuscular properties (i.e. (1) muscle stress as a measure of contractile ability; (2) excitatory junction potential (EJP) amplitude as a measure of neurotransmitter release; (3) specific membrane resistance (Rm) as a measure of postsynaptic membrane properties) were compared at 8, 20, and 30°C between northern cold acclimated (naturally cooled stone crabs and laboratory cooled blue crabs) and non-cold acclimated (laboratory cooled stone crabs. Muscle fibers in claws of stone crabs and blue crabs showing cold acclimation had higher Rm at 8°C than non-cold acclimated crabs. This higher Rm resulted in a broadening of EJP's which enhanced EJP summation, muscle fiber depolarization, and muscle stress.Abbreviations EJP excitatory junction potential - E r resting membrane potential - F e lacilitation - R m specific membrane resistance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号