首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonia assimilation by the plastidic glutamine synthetase/glutamate synthase system requires 2-oxoglutarate (2-OG) as a carbon precursor. Plastids depend on 2-OG import from the cytosol. A plastidic dicarboxylate translocator 1-[2-OG/malate translocator (DiT1)] has been identified and its substrate specificity and kinetic constants have been analyzed in vitro. However, the role of DiT1 in intact plants and its significance for ammonia assimilation remained uncertain. Here, to study the role of DiT1 in intact plants, its expression was antisense-repressed in transgenic tobacco plants. This resulted in a reduced transport capacity for 2-OG across the plastid envelope membrane. In consequence, allocation of carbon precursors to amino acid synthesis was impaired, organic acids accumulated and protein content, photosynthetic capacity and sugar pools in leaves were strongly decreased. The phenotype was consistent with a role of DIT1 in both, primary ammonia assimilation and the re-assimilation of ammonia resulting from the photorespiratory carbon cycle. Unexpectedly, the in situ rate of nitrate reduction was extremely low in alpha-DiT1 leaves, although nitrate reductase (NR) expression and activity remained high. We hypothesize that this discrepancy between extractable NR activity and in situ nitrate reduction is due to substrate limitation of NR. These findings and the severe phenotype of the antisense plants point to a crucial role of DiT1 at the interface between carbon and nitrogen metabolism.  相似文献   

2.
Plastids are the site of the reductive and the oxidative pentose phosphate pathways, which both generate pentose phosphates as intermediates. A plastidic transporter from Arabidopsis has been identified that is able to transport, in exchange with inorganic phosphate or triose phosphates, xylulose 5-phosphate (Xul-5-P) and, to a lesser extent, also ribulose 5-phosphate, but does not accept ribose 5-phosphate or hexose phosphates as substrates. Under physiological conditions, Xul-5-P would be the preferred substrate. Therefore, the translocator was named Xul-5-P/phosphate translocator (XPT). The XPT shares only approximately 35% to 40% sequence identity with members of both the triose phosphate translocator and the phosphoenolpyruvate/phosphate translocator classes, but a higher identity of approximately 50% to glucose 6-phosphate/phosphate translocators. Therefore, it represents a fourth group of plastidic phosphate translocators. Database analysis revealed that plant cells contain, in addition to enzymes of the oxidative branch of the oxidative pentose phosphate pathway, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase in both the cytosol and the plastids, whereas the transketolase and transaldolase converting the produced pentose phosphates to triose phosphates and hexose phosphates are probably solely confined to plastids. It is assumed that the XPT function is to provide the plastidic pentose phosphate pathways with cytosolic carbon skeletons in the form of Xul-5-P, especially under conditions of a high demand for intermediates of the cycles.  相似文献   

3.
The subcellular distribution of enzymes of the oxidative pentose phosphate pathway was studied in plants. Root and leaf tissues from several species were separated by differential centrifugation into plastidic and cytosolic fractions. In all tissues studied, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in both plastidic and cytosolic compartments. In maize and pea root, and spinach and pea leaf, the non-oxidative enzymes of the pentose phosphate pathway (transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase) appear to be restricted to the plastid. In tobacco leaf and root, however, the non-oxidative enzymes were found in the cytosolic as well as the plastidic compartments. In the absence of ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase in the cytosol, the product of the oxidative limb of the pathway (ribulose 5-phosphate) must be transported into a compartment capable of utilizing it. Ribulose 5-phosphate was supplied to isolated intact pea root plastids and was shown to be capable of supporting nitrite reduction. The kinetics of ribulose 5-phosphate-driven nitrite reduction in isolated pea root plastids suggested that the metabolite was translocated across the plastid envelope in a carrier-mediated transport process, indicating the presence of a translocator capable of transporting pentose phosphates.Keywords: Pentose phosphate, subcellular, plastid, ribulose 5-phosphate, compartmentation   相似文献   

4.
Purified pea root plastids were supplied with glutamine, 2-oxoglutarate and phosphorylated sugars. Formation of glutamate was linear for 75 min and dependent upon the intactness of the organelle. Glucose-6-phosphate and ribose-5-phosphate were the most effective substrates in supporting glutamate synthesis. Flux through the oxidative pentose phosphate pathway during glutamate synthesis in purified plastids was followed by monitoring the release of 14CO2 from [1-14C]glucose-6-phosphate. 14CO2 evolution from C-1 was dependent upon the presence of both glutamine and 2-oxoglutarate and could be inhibited by the application of azaserine. The data are discussed in view of the role of the oxidative pentose phosphate pathway in non-photosynthetic plastids.  相似文献   

5.
Evidence is provided for a close link between glutamate (Glu) synthesis and the production of reducing power by the oxidative pentose phosphate pathway (OPPP) in barley ( Hordeum vulgare L. var. Alfeo) root plastids. A rapid procedure for isolating organelles gave yields of plastids of over 30%, 60% of which were intact. The formation of Glu by intact plastids fed with glutamine and 2-oxoglutarate, both substrates of glutamate synthase (GOGAT), depends on glucose-6-phosphate (Glc-6-P) supply. The whole process exhibited an apparent K(m Glc-6-P) of 0.45 mM and is abolished by azaserine, a specific inhibitor of GOGAT; ATP caused a decrease in the rate of Glu formation. Glucose and other sugar phosphates were not as effective in supporting Glu synthesis with respect to Glc-6-P; only ribose-5-phosphate, an intermediate of OPPP, supported rates equivalent to Glc-6-P. Glucose-6-phosphate dehydrogenase (Glc6PDH) rapidly purified from root plastids showed an apparent K(m Glc-6-P) of 0.96 mM and an apparent K(m NADP)(+) of 9 micro M. The enzyme demonstrated high tolerance to NADPH, exhibiting a K(i) (NADPH) of 58.6 micro M and selectively reacted with antibodies against potato plastidic, but not chloroplastic, Glc6PDH isoform. The data support the hypothesis that plastidic OPPP is the main site of reducing power supply for GOGAT within the plastids, and suggest that the plastidic OPPP would be able to sustain Glu synthesis under high NADPH:NADP(+) ratios even if the plastidic Glc6PDH may not be functioning at its highest rates.  相似文献   

6.
In roots, nitrate assimilation is dependent upon a supply of reductant that is initially generated by oxidative metabolism including the pentose phosphate pathway (OPPP). The uptake of nitrite into the plastids and its subsequent reduction by nitrite reductase (NiR) and glutamate synthase (GOGAT) are potentially important control points that may affect nitrate assimilation. To support the operation of the OPPP there is a need for glucose 6-phosphate (Glc6P) to be imported into the plastids by the glucose phosphate translocator (GPT). Competitive inhibitors of Glc6P uptake had little impact on the rate of Glc6P-dependent nitrite reduction. Nitrite uptake into plastids, using (13)N labelled nitrite, was shown to be by passive diffusion. Flux through the OPPP during nitrite reduction and glutamate synthesis in purified plastids was followed by monitoring the release of (14)CO(2) from [1-(14)C]-Glc6P. The results suggest that the flux through the OPPP is maximal when NiR operates at maximal capacity and could not respond further to the increased demand for reductant caused by the concurrent operation of NiR and GOGAT. Simultaneous nitrite reduction and glutamate synthesis resulted in decreased rates of both enzymatic reactions. The enzyme activity of glucose 6-phosphate dehydrogenase (G6PDH), the enzyme supporting the first step of the OPPP, was induced by external nitrate supply. The maximum catalytic activity of G6PDH was determined to be more than sufficient to support the reductant requirements of both NiR and GOGAT. These data are discussed in terms of competition between NiR and GOGAT for the provision of reductant generated by the OPPP.  相似文献   

7.
Transport of isoprenoid intermediates across chloroplast envelope membranes   总被引:2,自引:0,他引:2  
The common precursor for isoprenoid biosynthesis in plants, isopentenyl diphosphate (IPP), is synthesized by two pathways, the cytosolic mevalonate pathway and the plastidic 1-deoxy-D-xylulose 5-phosphate/methylerythritol phosphate (DOXP/MEP) pathway. The DOXP/MEP pathway leads to the formation of various phosphorylated intermediates, including DOXP, 4-hydroxy-3-methylbutenyl diphosphate (HMBPP), and finally IPP. There is ample evidence for metabolic cross-talk between the two biosynthetic pathways. The present study addresses the question whether isoprenoid intermediates could be exchanged between both compartments by members of the plastidic phosphate translocator (PT) family that all mediate a counter-exchange between inorganic phosphate and various phosphorylated compounds. Transport experiments using intact chloroplasts, liposomes containing reconstituted envelope membrane proteins or recombinant PT proteins showed that HMBPP is not exchanged between the cytosol and the chloroplasts and that the transport of DOXP is preferentially mediated by the recently discovered plastidic transporter for pentose phosphates, the xylulose 5-phosphate translocator. Evidence is presented that transport of IPP does not proceed via the plastidic PTs although IPP transport is strictly dependent on various phosphorylated compounds on the opposite side of the membrane. These phosphorylated trans compounds are, in part, also used as counter-substrates by the plastidic PTs but appear to only trans activate IPP transport without being transported.  相似文献   

8.
Ribose-5-phosphate isomerase (RPI) catalyses the interconversion of ribose-5-phosphate and ribulose-5-phosphate in the reductive and oxidative pentose phosphate pathways in plants. RPI from spinach chloroplasts was purified and microsequenced. Via PCR with degenerate primers designed against microsequenced peptides, a hybridisation probe was obtained and used to isolate several cDNA clones which encode RPI. The nuclear-encoded 239 amino acid mature RPI subunit has a predicted size of 25.3 kDa and is translated as a cytosolic precursor possessing a 50 amino acid transit peptide. The processing site of the transit peptide was identified from protein sequence data. Spinach leaves possess only one type of homodimeric RPI enzyme which is localized in chloroplasts and is encoded by a single nuclear gene. Molecular characterization of RPI supports the view that a single amphibolic RPI enzyme functions in the oxidative and reductive pentose phosphate pathways of spinach plastids.Abbreviations RPI ribose-5-phosphate isomerase - OPPP oxidative pentose phosphate pathway - CNBr cyanogen bromide - R5P ribose-5-phosphate - Ru5P ribulose-5-phosphate  相似文献   

9.
Communication between plastids and the surrounding cytosol occurs via the plastidic envelope membrane. Recent findings show that the outer membrane is not as freely permeable to low molecular weight solutes as previously thought, but contains different channel-like proteins that act as selectivity filters. The inner envelope membrane contains a variety of metabolite transporters that mediate the exchange of metabolites between both compartments. Two new classes of phosphate antiporters were recently described that are different in structure and function from the known triose phosphate/phosphate translocator from chloroplasts. In addition, a cDNA coding for an ATP/ADP antiporter from plastids was isolated that shows similarities to a bacterial adenylate translocator.  相似文献   

10.
B. Dahlbender  D. Strack 《Planta》1986,169(3):382-392
The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GDH glutamate dehydrogenase - GOGAT glutamate synthase (glutamine: 2-oxoglutarate aminotransferase) - GOT aspartate aminotransferase (glutamate: oxaloacetate transaminase) - GS glutamine synthetase - HPLC high-performance liquid chromatography - MCF extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol. - MDH malate dehydrogenase - MSO L-methionine, sulfoximine - PEPCase phosphoenolpyruvate carboxylase - TLC thin-layer chromatography  相似文献   

11.
Oxaloacetate transport into plant mitochondria   总被引:4,自引:1,他引:3       下载免费PDF全文
The properties of oxaloacetate (OA) transport into mitochondria from potato (Solanum tuberosum) tuber and pea (Pisum sativum) leaves were studied by measuring the uptake of 14C-labeled OA into liposomes with incorporated mitochondrial membrane proteins preloaded with various dicarboxylates or citrate. OA was found to be transported in an obligatory counterexchange with malate, 2-oxoglutarate, succinate, citrate, or aspartate. Phtalonate inhibited all of these countertransports. OA-malate countertransport was inhibited by 4,4′-dithiocyanostilbene-2,2′-disulfonate and pyridoxal phosphate, and also by p-chloromercuribenzene sulfonate and mersalyl, indicating that a lysine and a cysteine residue of the translocator protein are involved in the transport. From these and other inhibition studies, we concluded that plant mitochondria contain an OA translocator that differs from all other known mitochondrial translocators. Major functions of this translocator are the export of reducing equivalents from the mitochondria via the malate-OA shuttle and the export of citrate via the citrate-OA shuttle. In the cytosol, citrate can then be converted either into 2-oxoglutarate for use as a carbon skeleton for nitrate assimilation or into acetyl-coenzyme A for use as a precursor for fatty acid elongation or isoprenoid biosynthesis.  相似文献   

12.
Metabolite translocators in the inner membrane of the plastid envelope are the interface between cytosolic and plastidial metabolism. Hence, they integrate plastidial pathways, such as photosynthesis, starch biosynthesis, the oxidative pentose phosphate pathway and the shikimate pathway, into the metabolic network of plant cells. Metabolite transporters not only catalyze the flux of metabolites between compartments but also represent information pathways that communicate the metabolic status of the various compartments within plant cells. Recently, a pentose-phosphate translocator was shown to be a novel member of the phosphate translocator protein family. Furthermore, a protein of previously unknown function was identified as a novel type of maltose transporter, and a glutamate/malate translocator that is involved in photorespiration was discovered. In addition, the pathway for maltose metabolism in the cytosol has been unraveled.  相似文献   

13.
The direct incorporation of 15NH4Cl into amino acids in illuminated spinach (Spinacia oleracea L.) chloroplasts in the presence of 2-oxoglutarate plus malate was determined. The amido-N of glutamine was the most highly labeled N-atom during 15NH4 assimilation in the presence of malate. In 4 minutes the 15N-label of the amido-N of glutamine was 37% enriched. In contrast, values obtained for both the N-atom of glutamate and the amino-N of glutamine were only about 20% while that of the N-atom of aspartate was only 3%. The addition of malate during the assimilation of 15NH4Cl and Na15NO2 greatly increased the 15N-label into glutamine but did not qualitatively change the order of the incorporation of 15N-label into all the amino acids examined. This evidence indicates the direct involvement of the glutamine synthetase/glutamate synthase pathway for ammonia and nitrite assimilation in isolated chloroplasts. The addition of malate or succinate during ammonia assimilation also led to more than 3-fold increase in [14C]2-oxoglutarate transport into the chloroplast as well as an increase in the export of [14C]glutamate out of the chloroplast. Little [14C]glutamine was detected in the medium of the chloroplast preparations. The stimulation of 15N-incorporation and [14C]glutamate export by malate could be directly attributed to the increase in 2-oxoglutarate transport activity (via the 2-oxoglutarate translocator) observed in the presence of exogenous malate.  相似文献   

14.
In this study we examined the processes by which malate and pyruvate are taken up across the leucoplast envelope for fatty acid synthesis in developing castor (Ricinus communis L.) seed endosperm. Malate was taken up by isolated leucoplasts with a concentration dependence indicative of protein-mediated transport. The maximum rate of malate uptake was 704 [plus or minus] 41 nmol mg-1 protein h-1 and the Km was 0.62 [plus or minus] 0.08 mM. In contrast, the rate of pyruvate uptake increased linearly with respect to the substrate concentration and was 5-fold less than malate at a concentration of 5 mM. Malate uptake was inhibited by inorganic phosphate (Pi), glutamate, malonate, succinate, 2-oxoglutarate, and n-butyl malonate, an inhibitor of the mitochondrial malate/Pi-exchange translocator. Back-exchange experiments confirmed that malate was taken up by leucoplasts in counterexchange for Pi. The exchange stoichiometry was 1:1. The rate of malate-dependent fatty acid synthesis by isolated leucoplasts was 3-fold greater than from pyruvate at a concentration of 5 mM and was inhibited by n-butyl malonate. It is proposed that leucoplasts from developing castor endosperm contain a malate/Pi translocator that imports malate for fatty acid synthesis. This type of dicarboxylate transport activity has not been identified previously in plastids.  相似文献   

15.
Two α-amylase-producing strains of Aspergillus oryzae, a wild-type strain and a recombinant containing additional copies of the α-amylase gene, were characterized with respect to enzyme activities, localization of enzymes to the mitochondria or cytosol, macromolecular composition, and metabolic fluxes through the central metabolism during glucose-limited chemostat cultivations. Citrate synthase and isocitrate dehydrogenase (NAD) activities were found only in the mitochondria, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase (NADP) activities were found only in the cytosol, and isocitrate dehydrogenase (NADP), glutamate oxaloacetate transaminase, malate dehydrogenase, and glutamate dehydrogenase (NAD) activities were found in both the mitochondria and the cytosol. The measured biomass components and ash could account for 95% (wt/wt) of the biomass. The protein and RNA contents increased linearly with increasing specific growth rate, but the carbohydrate and chitin contents decreased. A metabolic model consisting of 69 fluxes and 59 intracellular metabolites was used to calculate the metabolic fluxes through the central metabolism at several specific growth rates, with ammonia or nitrate as the nitrogen source. The flux through the pentose phosphate pathway increased with increasing specific growth rate. The fluxes through the pentose phosphate pathway were 15 to 26% higher for the recombinant strain than for the wild-type strain.  相似文献   

16.
17.
The role of transporters in supplying energy to plant plastids   总被引:1,自引:0,他引:1  
The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.  相似文献   

18.
Transport of dicarboxylates across the chloroplast envelope plays an important role in transferring carbon skeletons to the nitrogen assimilation pathway and exporting reducing equivalent to the cytosol to prevent photo-inhibition (the malate valve). It was previously shown that the Arabidopsis plastidic 2-oxoglutarate/malate transporter (AtpOMT1) and the general dicarboxylate transporter (AtpDCT1) play crucial roles at the interface between carbon and nitrogen metabolism. However, based on the in vitro transport properties of the recombinant transporters, it was hypothesized that AtpOMT1 might play a dual role, also functioning as an oxaloacetate/malate transporter, which is a crucial but currently unidentified component of the chloroplast malate valve. Here, we test this hypothesis using Arabidopsis T-DNA insertional mutants of AtpOMT1. Transport studies revealed a dramatically reduced rate of oxaloacetate uptake into chloroplasts isolated from the knockout plant. CO(2) -dependent O(2) evolution assays showed that cytosolic oxaloacetate is efficiently transported into chloroplasts mainly by AtpOMT1, and supported the absence of additional oxaloacetate transporters. These findings strongly indicate that the high-affinity oxaloacetate transporter in Arabidopsis chloroplasts is AtpOMT1. Further, the knockout plants showed enhanced photo-inhibition under high light due to greater accumulation of reducing equivalents in the stroma, indicating malfunction of the malate valve in the knockout plants. The knockout mutant showed a phenotype consistent with reductions in 2-oxoglutarate transport, glutamine synthetase/glutamate synthase activity, subsequent amino acid biosynthesis and photorespiration. Our results demonstrate that AtpOMT1 acts bi-functionally as an oxaloacetate/malate transporter in the malate valve and as a 2-oxoglutarate/malate transporter mediating carbon/nitrogen metabolism.  相似文献   

19.
20.
Recently, we have sequenced a cDNA clone from Arabidopsis thaliana L. encoding a novel putative ATP/ADP translocator (AATP1). Here, we demonstrate that the radioactively labeled AATP1 precursor protein, synthesized in vitro , is targeted to envelope membranes of isolated spinach chloroplasts. Antibodies raised against a synthetic peptide of AATP1 recognized a single polypeptide of about 62 kDa in chloroplast inner envelope preparations. The cDNA coding for the AATP1 protein was functionally expressed in Saccharomyces cerevisiae and Escherichia coli . In both expression systems, increased rates of ATP transport were observed after reconstitution of the extracted protein into proteoliposomes. To our knowledge, this is the first report on the functional expression of an intrinsic plant membrane protein in E. coli . To yield high rates of ATP transport, proteoliposomes had to be preloaded with ADP, indicating a counter-exchange mode of transport. Carboxyatractyloside did not substantially interfere with ATP transport into proteoliposomes containing the plastidic ATP/ADP translocator. An apparent KM for ATP of 28 µM was determined which is similar to values reported for isolated plastids. The data presented here strongly support the conclusion that AATP1 represents a novel eukaryotic adenylate carrier and that it is identical with the so far unknown plastidic ATP/ADP translocator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号