首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Throughout the plant kingdom expression of the flavonoid biosynthetic pathway is precisely regulated in response to developmental signals, nutrient status, and environmental stimuli such as light, heat and pathogen attack. Previously we showed that, in developing Arabidopsis seedlings, flavonoid genes are transiently expressed during germination in a light-dependent manner, with maximal mRNA levels occurring in 3-day-old seedlings. Here we describe the relationship between developmental and environmental regulation of flavonoid biosynthesis by examining phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) mRNA levels in germinating Arabidopsis seedlings as a function of light, developmental stage and temperature. We show that seedlings exhibit a transient potential for induction of these four genes, which is distinct from that observed for chlorophyll a/b-binding protein (CAB). The potential for flavonoid gene induction was similar in seedlings grown in darkness and red light, indicating that induction potential is not linked to cotyledon expansion or the development of photosynthetic capacity. The evidence for metabolic regulation of flavonoid genes during seedling development is discussed.  相似文献   

2.
Immunofluorescence and immuno-electron microscopy have been used to test the hypothesis that flavonoid metabolism is organized as a membrane-associated enzyme complex. The cellular and subcellular locations of chalcone synthase (CHS) and chalcone isomerase (CHI), the first two enzymes of this pathway, were examined in Arabidopsis roots. High levels of both enzymes were found in the epidermal and cortex cells of the elongation zone and the root tip, consistent with the accumulation of flavonoid endproducts at these sites. Co-localization of CHS and CHI was observed at the endoplasmic reticulum and tonoplast in these cells, and also in electron-dense regions that are, as yet, unidentified. In addition, a striking asymmetric distribution was observed for these enzymes in cortex cells of the elongation zone, which may provide clues about the physiological function of flavonoids in roots. The accumulation of CHS and CHI was also examined in tt7(88), a mutant in the gene for flavonoid 3'-hydroxylase (F3'H), which has been postulated to serve as a membrane anchor for the flavonoid enzyme complex. CHS and CHI accumulated to lower levels in cortex cells and higher levels in epidermal cells in the roots of this mutant as compared with wild-type plants. Moreover, the electron-dense regions containing these two enzymes were not observed. However, localization of CHS and CHI to the ER and tonoplast did not appear to be affected, suggesting that other proteins may function in recruiting the "soluble" flavonoid enzymes to membranes. Staining of flavonoid endproducts with DPBA was consistent with expression of CHS and CHI in these seedlings.  相似文献   

3.
Flavonoids are closely related to a plant's antioxidative ability. Because chalcone synthase (CHS) is the first enzyme to act as part of the flavonoid biosynthesis pathway, its expression and regulation are important. Here we present the expression of a full-length chs cDNA with 1225bp from grape seedlings as well as the preparation of an antibody against the expressed protein. A full-length chs cDNA was introduced into an expressed plasmid pET-30a(+) vector at the EcoRI and SalI restriction sites. pET-chs was found to be highly expressed in Escherichia coli BL21(DE3) pLysS cells with isopropyl-beta-d-thiogalactoside (IPTG) induction. A fusion protein with the His.tag label was purified by Ni-NTA His.Bind Resin and then used as the antigen to immunize a New Zealand rabbit. The resulting antiserum was then further precipitated by 50% saturated ammonium sulfate and DEAE-Sepharose FF column chromatography to obtain the immunoglobulin G (IgG) fraction. The resulting antibody was found capable of immuno-recognizing the CHS of the crude protein extracts from different grape tissues with a molecular mass of 43kDa.  相似文献   

4.
Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor.  相似文献   

5.
An allelic series for the chalcone synthase locus in Arabidopsis   总被引:11,自引:0,他引:11  
Saslowsky DE  Dana CD  Winkel-Shirley B 《Gene》2000,255(2):127-138
Five new alleles of the Arabidopsis chalcone synthase (CHS) locus, tt4, have been characterized at the gene, protein, and end product levels as a genetic approach to understanding structure-function relationships in a key enzyme of plant secondary metabolism. Together with two previously described mutants, these tt4 lines represent one of the first allelic series for a central enzyme of the flavonoid pathway and include both null alleles and alleles with leaky, apparently temperature-sensitive, phenotypes. A variety of effects on accumulation of CHS protein and flavonoid glycosides were observed among these lines, including alterations in the apparent stability and activity of the enzyme. Assembly of the CHS homodimer also appeared to be impacted in several cases. A three-dimensional model of the Arabidopsis CHS protein, based on the recently determined structure for alfalfa CHS, predicts significant effects on protein structure or folding for several of the mutations. This allelic series should provide a useful genetic resource for ongoing studies of flavonoid enzyme structure, function, and subcellular organization.  相似文献   

6.
Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best‐studied metabolic pathways. Here we have identified three mutations within a gene that result in pale‐colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)‐related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio‐temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3‐MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale‐colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species.  相似文献   

7.
8.
Flavonoid metabolons (weakly‐bound multi‐enzyme complexes of flavonoid enzymes) are believed to occur in diverse plant species. However, how flavonoid enzymes are organized to form a metabolon is unknown for most plant species. We analyzed the physical interaction partnerships of the flavonoid enzymes from two lamiales plants (snapdragon and torenia) that produce flavones and anthocyanins. In snapdragon, protein–protein interaction assays using yeast and plant systems revealed the following binary interactions: flavone synthase II (FNSII)/chalcone synthase (CHS); FNSII/chalcone isomerase (CHI); FNSII/dihydroflavonol 4‐reductase (DFR); CHS/CHI; CHI/DFR; and flavonoid 3′‐hydroxylase/CHI. These results along with the subcellular localizations and membrane associations of snapdragon flavonoid enzymes suggested that FNSII serves as a component of the flavonoid metabolon tethered to the endoplasmic reticulum (ER). The observed interaction partnerships and temporal gene expression patterns of flavonoid enzymes in red snapdragon petal cells suggested the flower stage‐dependent formation of the flavonoid metabolon, which accounted for the sequential flavone and anthocyanin accumulation patterns therein. We also identified interactions between FNSII and other flavonoid enzymes in torenia, in which the co‐suppression of FNSII expression was previously reported to diminish petal anthocyanin contents. The observed physical interactions among flavonoid enzymes of these plant species provided further evidence supporting the long‐suspected organization of flavonoid metabolons as enzyme complexes tethered to the ER via cytochrome P450, and illustrated how flavonoid metabolons mediate flower coloration. Moreover, the observed interaction partnerships were distinct from those previously identified in other plant species (Arabidopsis thaliana and soybean), suggesting that the organization of flavonoid metabolons may differ among plant species.  相似文献   

9.
We have analysed the expression of the 8–10 members of the gene family encoding the flavonoid biosynthetic enzyme chalcone synthase (CHS) from Petunia hybrida. During normal plant development only two members of the gene family (CHS-A and CHS-J) are expressed. Their expression is restricted to floral tissues mainly. About 90% of the total CHS mRNA pool is transcribed from CHS-A, wheares CHS-J delivers about 10% in flower corolla, tube and anthers. Expression of CHS-A and CHS-J during flower development is coordinated and (red) light-dependent. In young seedlings and cell suspension cultures expression of CHS-A and CHS-J can be induced with UV light. In addition to CHS-A and CHS-J, expression of another two CHS genes (CHS-B and CHS-G) is induced in young seedlings by UV light, albeit at a low level. In contrast to CHS genes from Leguminoseae, Petunia CHS genes are not inducible by phytopathogen-derived elicitors. Expression of CHS-A and CHS-J is reduced to a similar extent in a regulatory CHS mutant, Petunia hybrida Red Star, suggesting that both genes are regulated by the same trans-acting factors. Comparison of the promoter sequences of CHS-A and CHS-J reveals some striking homologies, which might represent cis-acting regulatory sequences.  相似文献   

10.
11.
UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species.  相似文献   

12.
The Arabidopsis gene encoding the key flavonoid biosynthesis enzyme chalcone synthase (CHS) is regulated by several environmental and endogenous stimuli. Here we dissect the network of light signalling pathways that control CHS expression in mature leaves using cryptochrome (cry) and phytochrome (phy) deficient mutants. The UV-A/blue light induction of CHS is mediated principally by cry1, but neither cry1 nor cry2 is involved in UV-B induction or in the UV-A and blue light signalling pathways that interact synergistically with the UV-B pathway to enhance CHS expression. Moreover, these synergistic responses do not require phyA or phyB. Phytochrome is a positive regulator of the cry1 inductive pathway, mediating distinct potentiation and coaction effects. A red light pretreatment enhances subsequent cry1-mediated CHS induction. This potentiation is unaltered in phyA and phyB mutants but much reduced in a phyA phyB double mutant, indicating that it requires principally phyA or phyB. In contrast, the cry1-mediated induction of CHS, without pretreatment, is much reduced in phyB but not phyA mutants, indicating coaction between cry1 and phyB. Further experiments with phy-deficient mutants demonstrate that phyB is a negative regulator of the UV-B inductive pathway. We further show that phyB acts upstream of the points of interaction of the UV-A and blue synergism pathways with the UV-B pathway. We propose that phyB functions to balance flux through the cry1 and UV-B signalling pathways.  相似文献   

13.
Journal of Plant Biochemistry and Biotechnology - The two decisive enzymes in flavonoid biosynthetic pathway are chalcone synthase (CHS) and chalcone isomerase (CHI), wherein the former carries the...  相似文献   

14.
15.
A cDNA encoding chalcone synthase (CHS), the key enzyme in flavonoid biosynthesis, was isolated from hairy root cultures of Scutellaria viscidula Bunge by rapid amplification of cDNA ends (RACE). The full-length cDNA of S. viscidula CHS, designated as Svchs (GenBank accession no. EU386767), was 1649 bp with a 1170 bp open reading frame (ORF) that corresponded to a deduced protein of 390 amino acid residues, a calculated molecular mass of 42.56 kDa and a theoretical isoelectric point (pI) of 5.79. Multiple sequence alignments showed that SvCHS shared high homology with CHS from other plants. Functional analysis in silico indicated that SvCHS was a hydrophilic protein most likely associated with intermediate metabolism. The active sites of the malonyl-CoA binding motif, coumaroyl pocket and cyclization pocket in CHS of Medicago sativa were also found in SvCHS. Molecular modeling indicated that the secondary structure of SvCHS contained mainly α-helixes and random coils. Phylogenetic analysis showed that SvCHS was most closely related to CHS from Scutellaria baicalensis. In agreement with its function as an elicitor-responsive gene, the expression of Svchs was induced and coordinated by methyl jasmonate. To our knowledge, this is the first report to describe the isolation and expression of a gene from S. viscidula.  相似文献   

16.
Summary The constitutive expression of an antisense chalcone synthase (CHS) gene in transgenic petunia plants results with high frequency in a reduced flower pigmentation due to a reduction in the CHS mRNA steady-state level in floral tissue. Here we show that this reduction is specific for CHS mRNA; chalcone flavanone isomerase (CHI) and dihydroflavonol reductase (DFR) mRNA steady-state levels are unaffected. However, in white floral tissue a severe reduction in CHI specific activity is found, accompanied by an altered signal for CHI protein on western blots. We find no correlation between the phenotypic effect of the antisense CHS gene and its chromosomal position. For some of the antisense CHS transformants the flower phenotype is highly variable. We demonstrate that pigmentation in these plants can be influenced by gibberellic acid and light, suggesting that the variable flower phenotype is caused by changes in physiological conditions during flower development. The results not only indicate that flower pigmentation in these plants reveals the variable expression of the antisense transgene, but also show that genomic sequences flanking the transgene may render its expression extremely susceptible to physiological conditions.  相似文献   

17.
Enhanced shoot growth and a decrease in flavonoid concentration in apple trees grown under high nitrogen (N) supply was observed in previous studies, along with increasing scab susceptibility of cultivar "Golden Delicious" after high N nutrition. Several hypotheses have suggested that there is a trade-off between primary and secondary metabolism because of competition for common substrates, but nothing is known about regulation at the enzyme level. In this study, a set of experiments was performed to elucidate the effect of N nutrition on the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase [PAL], chalcone synthase/chalcone isomerase [CHS/CHI}, flavanone 3-hydroxylase [FHT], flavonol synthase [FLS], dihydroflavonol 4-reductase [DFR]) and the accumulation of different groups of phenylpropanoids. The inhibition of flavonoid accumulation by high N nutrition could be confirmed, but the influence of N supply on the flavonoid enzymes CHS/CHI, FHT, DFR, and FLS was not evident. However, PAL activity seems to be downregulated, thus forming a bottleneck resulting in a generally decreased flavonoid accumulation. Furthermore, the response of the scab-resistant cultivar "Rewena" to high N nutrition was not as strong as that of the susceptible cultivar "Golden Delicious".  相似文献   

18.
A genomic clone encoding flavanone 3-hydroxylase (F3H) was isolated from Arabidopsis thaliana. The deduced amino acid sequence is 72 to 94% identical to all previously reported F3H proteins. Low-stringency DNA blot analysis indicated that F3H is encoded by a single gene in Arabidopsis. The F3H locus was mapped to the bottom of chromosome 3 and therefore does not correspond to any of the 13 flavonoid-deficient transparent testa mutants for which a map position is known. Analysis of gene expression in etiolated seedlings exposed to white light and in two putative regulatory mutants, ttg and tt8, demonstrated that the Arabidopsis F3H gene is coordinately expressed with chalcone synthase and chalcone isomerases is seedlings, whereas dihydroflavonol reductase expression is controlled by distinct regulatory mechanisms. The F3H gene may represent a pivotal point in the regulation of flavonoid biosynthesis because its expression is coordinated with different subsets of genes in different plant species.  相似文献   

19.
Polyclonal antibodies were developed against the flavonoid biosynthetic enzymes, CHS, CHI, F3H, FLS, and LDOX from Arabidopsis thaliana. These antibodies were used to perform the first detailed analysis of coordinate expression of flavonoid metabolism at the protein level. The pattern of flavonoid enzyme expression over the course of seedling development was consistent with previous studies indicating that chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), and flavonol synthase (FLS) are encoded by early genes while leucoanthocyanidin dioxygenase (LDOX) is encoded by a late gene. This sequential expression may underlie the variations in flavonoid end-products produced during this developmental stage, as determined by HPLC analysis, which includes a shift in the ratio of the flavonols, quercetin and kaempferol. Moreover, immunoblot and HPLC analyses revealed that several transparent testa lines blocked at intermediate steps of the flavonoid pathway actually accumulated higher levels of specific flavonoid enzymes and end-products. These results suggest that specific intermediates may act as inducers of flavonoid metabolism.  相似文献   

20.
This study investigated the effects of cross-talk interactions of sucrose and infection caused by a pathogenic fungus Fusarium oxysporum f.sp. lupini on the regulation of the phenylpropanoid pathway, i.e. the level of expression of genes encoding enzymes participating in flavonoid biosynthesis, as well as cell location and accumulation of these compounds in embryo axes of Lupinus luteus L. cv. Polo. Embryo axes, both non-inoculated and inoculated, were cultured for 96 h on Heller medium with 60 mM sucrose (+Sn and +Si) or without it (−Sn and −Si). Real-time RT-PCR to assess expression levels of the flavonoid biosynthetic genes, phenylalanine ammonialyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI) and isoflavone synthase (IFS) were used. Sucrose alone strongly stimulated the expression of these genes. There was a very high expression level of these genes in +Si embryo axes in the early phase of infection. Signal amplification by sucrose and the infection was most intense in the 48-h +Si axes, resulting in the highest level of expression of flavonoid biosynthetic genes. In −Si tissues, the expression level of these genes increased at 48 and 72 h after inoculation relative to 24 h; however, the relative level of expression was much lower than in +Si axes, except at 72 h for PAL and CHS.Moreover, at 48 h of culture, considerably higher activity of CHI (EC 5.5.1.6) was observed in axes with a high level of sucrose than in those with a sucrose deficit. CHI activity in +Si axes at 48 and 96 h post-inoculation was over 1.5 and 2 times higher than that in +Sn axes, as well as higher than in −Si axes.Observations of yellow lupine embryo axes under a confocal microscope showed an increased post-infection accumulation of flavonoids, particularly in cells of embryo axes infected with F. oxysporum and cultured on a medium containing sucrose (+Si). Up to 48 h post-infection in +Si axes, a very intensive emission of green fluorescence was observed, indicating high accumulation of these compounds in whole cells. Moreover, a nuclear location of flavonoids was recorded in cells. Strong staining of flavonoid end products in +Si embryo axes was consistent with the expression of PAL, CHS, CHI and IFS.These results indicate that, in the early phase of infection, the flavonoid biosynthesis pathway is considerably enhanced in yellow lupine embryo axes as a strong signal amplification effect of sucrose and the pathogenic fungus F. oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号